## 1.5 <br> Gonverting Units of Measure

STATE STANDARDS

MA.8.G.5.1

## Essential Question how can you convert from one measurement

 system to another?
## 1 ACIIV/JY: Converting Units of Measure

Work with a partner. Copy and complete the table. Describe the pattern in the completed table.

| Sample: a. <br> b. |  | Perimeter, in. to ft ratio | Area, in. ${ }^{2}$ to $\mathrm{ft}^{2}$ ratio |
| :---: | :---: | :---: | :---: |
|  |  | $\frac{60 \mathrm{in} .}{5 \mathrm{ft}}=\frac{12 \mathrm{in} .}{1 \mathrm{ft}}$ | $\frac{216 \mathrm{in} .{ }^{2}}{1.5 \mathrm{ft}^{2}}=\frac{144 \mathrm{in} .{ }^{2}}{1 \mathrm{ft}^{2}}$ |
|  |  | $\frac{\mathrm{in} .}{\mathrm{ft}}=$ | $\frac{\mathrm{in.}^{2}}{\mathrm{ft}^{2}}=$ |
| c. |  | $\frac{\mathrm{in} .}{\mathrm{ft}}=$ | $\frac{\mathrm{in.}^{2}}{\mathrm{ft}^{2}}=$ |
| d. |  | $\qquad$ in. $\square$ ft | $\frac{\mathrm{in.}^{2}}{\mathrm{ft}^{2}}=$ |
| e. |  | $\frac{\mathrm{in} .}{\mathrm{ft}}=$ | $\frac{\mathrm{in.}^{2}}{\mathrm{ft}^{2}}=$ |

## 2 ACTIVITY: Comparing Units of Measure

Work with a partner. Name the units for each pair of "rulers".
a.

b.

c.


## 3 ACTIVIJY: Puzzle

Who is correct, Fred or Sam? Explain your reasoning.
John said, "We left camp this morning, and walked 1 mile due south. Then, we saw a polar bear and turned due east and ran 1 kilometer. Finally, we turned due north and walked 1 mile and ended back at camp."

Fred said, "That is not possible!"
Sam explained, "Yes it is. And I know exactly where the camp was."


## What is Your Answer?

4. IN YOUR OWN WORDS How can you convert from one measurement system to another? The examples on these two pages are measurements of length and area. Describe a conversion between two types of temperature units.

## Practice

Use what you learned about converting units of measure to complete Exercises 4-6 on page 35.

## Key Vocabulary ${ }^{4}$ )

 conversion factor, p. 32To convert between customary and metric units, multiply by one or more conversion factors.

## GO Key Idea

## Conversion Factor

A conversion factor is a rate that equals 1.

Relationship
Example $1 \mathrm{~m} \approx 3.28 \mathrm{ft}$

Conversion factors
$\frac{1 \mathrm{~m}}{3.28 \mathrm{ft}}$ and $\frac{3.28 \mathrm{ft}}{1 \mathrm{~m}}$

EXAMPLE (7) Converting Between Systems
Convert 20 centimeters to inches.
Method 1: Use a conversion factor.

$\therefore$ - So, 20 centimeters is about 7.87 inches.

Method 2: Use a proportion.
Let $x$ be the number of inches equivalent to 20 centimeters.

$\because$ So, 20 centimeters is about 7.87 inches.

On Your Own
Copy and complete the statement.

1. $10 \mathrm{qt} \approx \mathrm{L}$
2. $4 \mathrm{~km} \approx \mathrm{mi}$
3. $18 \mathrm{in} . \approx \quad \mathrm{cm}$
4. $84 \mathrm{lb} \approx \quad \mathrm{kg}$

Convert the pumping rate of the human heart to liters per minute.

Pumps 5 quarts of blood per minute

$\therefore$ The rate of 5 quarts per minute is about 4.75 liters per minute.

## 3 Converting a Speed: Changing Both Units

Convert the speed of the zip liner to feet per second.

## Study Tip

Here is another way to convert the rate in Example 3.

- Write the rate as $15 \frac{\text { miles }}{\text { hour }}$.
- Substitute 5280 feet for miles and 3600 seconds for hour.
$\frac{15 \mathrm{mi}}{1 \mathrm{hx}}\left(\frac{5280 \mathrm{ft}}{1 \mathrm{mí}}\right)\left(\frac{1 \mathrm{ht}}{3600 \mathrm{sec}}\right)=\frac{15 \cdot 5280 \mathrm{ft}}{3600 \mathrm{sec}}$

$\therefore$ The speed of the zip liner is 22 feet per second.


## On Your Own

5. An oil tanker is leaking oil at a rate of 300 gallons per minute. Convert this rate to gallons per second.
6. A tennis ball travels at a speed of
 120 miles per hour. Convert this rate to feet per second.
7. A kite boarder travels at a speed of 10 meters per second. Convert this rate to kilometers per minute.

## CO Key Idea

## Converting Units for Area or Volume

To convert units for area, multiply the area by the square of the conversion factor.
To convert units for volume, multiply the volume by the cube of the conversion factor.

## EXAMPLE 4 Converting Units for Area

## Remember

Area is measured in square units. Volume is measured in cubic units.

The painting Fracture by Benedict Gibson has an area of 2880 square inches. What is the area of the painting in square feet?

$$
\begin{aligned}
& 1 \mathrm{ft}=12 \mathrm{in.} \\
2880 \mathrm{in}^{2} & =2880 \mathrm{in}^{2} \cdot\left(\frac{1 \mathrm{ft}}{12 \mathrm{in} .}\right)^{2} \\
& =2880 \mathrm{in.}^{2} \cdot \frac{1 \mathrm{ft}^{2}}{144 \mathrm{in.}^{2}} \\
& =\frac{2880}{144} \mathrm{ft}^{2} \\
& =20 \mathrm{ft}^{2}
\end{aligned}
$$


$\therefore$ :- The area of the painting is 20 square feet.


What is the volume of the cylinder in cubic centimeters?


$$
\begin{aligned}
80 \mathrm{~m}^{3} & =80 \mathrm{~m}^{3} \cdot\left(\frac{100 \mathrm{~cm}}{1 \mathrm{~m}}\right)^{3} \\
& =80 \mathrm{~m}^{3} \cdot \frac{1,000,000 \mathrm{~cm}^{3}}{1 \mathrm{~m}^{3}} \\
& =80,000,000 \mathrm{~cm}^{3}
\end{aligned}
$$

$\therefore$ The volume is $80,000,000$ cubic centimeters.

## $\bigcirc$ <br> On Your Own

Now You're Ready
Exercises 30-35
8. The painting Busy Market by Haitian painter Frantz Petion has an area of 6 square feet. What is the area of the painting in square inches?
9. The volume of a pyramid is 50 cubic centimeters. What is
 the volume of the pyramid in cubic millimeters?

### 1.5 Exercises

## Vocabulary and Concept Check

1. VOCABULARY Is $\frac{10 \mathrm{~mm}}{1 \mathrm{~cm}}$ a conversion factor? Explain.
2. WRITING Describe how to convert 2 liters per hour to milliliters per second.
3. WHICH ONE DOESN'T BELONG? Which measurement does not belong with the other three? Explain your reasoning.

$$
\begin{array}{l|l|l|l}
100 & \mathrm{in} . & 254 \mathrm{~cm} & 6.25 \mathrm{ft} \\
\hline
\end{array}
$$

## Practice and Problem Solving

Find the perimeter in feet and in yards.
4.

5.

6.


Copy and complete the statement.
(1)
7. $12 \mathrm{~L} \approx \mathrm{qt}$
8. $14 \mathrm{~m} \approx \mathrm{ft}$
9. $4 \mathrm{ft} \approx \mathrm{m}$
10. $64 \mathrm{lb} \approx \mathrm{kg}$
11. $0.3 \mathrm{~km} \approx \mathrm{mi}$
12. $75 \mathrm{in} . \approx$ $\square$ cm
13. $17 \mathrm{~kg} \approx$ $\qquad$ lb
14. $15 \mathrm{~cm} \approx$ $\square$ in.
15. $9 \mathrm{mi} \approx$ $\square$ km
16. ERROR ANALYSIS Describe and correct the error in converting the units.
17. BRIDGE The Sunshine Skyway Bridge connects St. Petersburg and Bradenton across Tampa Bay.

$$
\begin{aligned}
8 L & \approx 8 L \cdot \frac{0.95 \mathrm{qt}}{1 \mathrm{~L}} \\
& =8 \mathrm{~L} \cdot \frac{0.95 \mathrm{qt}}{1 \mathrm{~L}} \\
& =7.6 \mathrm{qt}
\end{aligned}
$$

a. How high above the water is the roadway in meters?
b. The bridge spans 29,040 feet. What is the length in kilometers?


Copy and complete the statement.

18. $\frac{13 \mathrm{~km}}{\mathrm{~h}} \approx \frac{\mathrm{mi}}{\mathrm{h}}$
19. $\frac{22 \mathrm{~L}}{\min }=\frac{\mathrm{L}}{\mathrm{h}}$
20. $\frac{63 \mathrm{mi}}{\mathrm{h}}=\frac{\mathrm{mi}}{\mathrm{sec}}$
21. $\frac{3 \mathrm{~km}}{\min } \approx \frac{\mathrm{mi}}{\mathrm{h}}$
22. $\frac{17 \mathrm{gal}}{\mathrm{h}} \approx \frac{\mathrm{qt}}{\min }$
23. $\frac{6 \mathrm{~cm}}{\min }=\frac{\mathrm{m}}{\mathrm{sec}}$
24. SNAIL What is the speed of the snail in kilometers per hour?
25. BLOOD DRIVE A donor gives blood at a rate of 0.125 pint per minute. What is the rate in milliliters per second?

26. POSTER A poster of your favorite band has a width of 15 inches. You have a space on your wall that has a width of 1.2 feet. Will the poster fit? Explain.

27. ROME Ancient Romans used the talent and the mina as measures of weight. How many minas are in 100 pounds?
28. FUEL EFFICIENCY The fuel efficiency standard for cars in Japan is 20 kilometers per liter. The fuel efficiency standard for cars in the United States is 28 miles per gallon. Which country has a greater fuel efficiency standard?


Copy and complete the statement.
30. $4 \mathrm{yd}^{2}=$ $\square$
$\mathrm{ft}^{2}$
31. $0.00125 \mathrm{mi}^{2}=\square \mathrm{ft}^{2}$
32. $30 \mathrm{~mm}^{2}=\quad \mathrm{cm}^{2}$
(5) $33.3 \mathrm{~km}^{3}=$ $\square$ $\mathrm{m}^{3}$
34. $2 \mathrm{ft}^{3}=$ $\square$ in. ${ }^{3}$
35. $420 \mathrm{~cm}^{3}=$ $\square$ $\mathrm{m}^{3}$
36. FIREWOOD The volume of a cord of firewood is 128 cubic feet. What is the volume of a cord of firewood in cubic yards? Round your answer to the nearest hundredth.
37. FABRIC COVER The pattern shows the dimensions of a fabric cover for a tissue box.
a. Use the pattern and a ruler to estimate the volume of a tissue box.
b. The volume of a tissue is about 0.864 cubic inch. About how many tissues are in a box?

38. PROJECT The table shows the currencies of four countries.
a. RESEARCH Use the Internet to find the exchange rates for the currencies listed in the table.
b. How much of each currency would you receive in exchange for $\$ 20$ ?

| Country | Currency | Value in <br> Dollars |
| :---: | :---: | :---: |
| United <br> States | Dollar | $\$ 1$ |
| Japan | Yen |  |
| Spain <br> Great <br> Britain | Euro |  |

39. SHAMPOO Your shampoo bottle is $80 \%$ full. The total volume of the bottle is 565 cubic centimeters. How much shampoo have you used? Write your answer in cubic millimeters.
40. 

Thinfical You make Floating Island Punch for a party.
a. Your punch bowl holds 6 liters. Will the punch fit into the bowl? Explain.
b. One milliliter is equal to 1 cubic centimeter. Can you store the punch in a container with a capacity of 3000 cubic centimeters?


Fair Game Review what you learned in previous grades \& lessons
Plot the ordered pair in a coordinate plane.
SKILLS REVIEW HANDBOOK
41. $(1,2)$
42. $(0,-3)$
43. $(-6,-8)$
44. $(-5,7)$
45. MULTIPLE CHOICE Which equation shows direct variation?

## SKILLS REVIEW HANDBOOK

(A) $y=2 x+1$
(B) $y=\frac{1}{3} x$
(C) $4=x y$
(D) $y=2 x-1$

