
Glossary

This student friendly glossary is designed to be a reference for key vocabulary, properties, and mathematical terms. Several of the entries include a short example to aid your understanding of important concepts.

Also available at BigIdeasMath.com:

- multi-language glossary
- vocabulary flash cards

absolute value	addend
The distance between a number and 0 on a number	A number to be added to another number.
line. The absolute value of a number <i>a</i> is written	
as $ a $.	2 or 3 in the sum $2 + 3$.
-5 = 5	
5 = 5	
5 = 5	
Addition Property of Equality	Addition Property of Inequality
If you add the same number to each side of an	If you add the same number to each side of
equation, the two sides remain equal.	an inequality, the inequality remains true.
x-4 = 5	x - 4 > 5
± 4 ± 4	± 4 ± 4
x = 9	x > 9
Addition Property of Zero	algebraic expression
The sum of any number and 0 is that number.	An expression that contains numbers, operations,
The sum of any number and 0 is that number.	and one or more variables.
5 + 0 = 5	
5 + 0 = 5	$8 + x, 6 \times a - b$

circumference	common factor
The distance around a circle.	A factor that is shared by two or more whole
	numbers.
d	2 is a common factor of 8 and 10.
Commutative Properties of Addition and	compatible numbers
Multiplication	Numbers that are easy to compute mentally.
Changing the order of addends or factors does not change the sum or product.	$237 \div 5\frac{5}{7} \approx 237 \div 6$
2 + 8 = 8 + 2	/ ≈ 240 ÷ 6
$2 \bullet 8 = 8 \bullet 2$	= 40
composite figure	congruent (figures)
A figure made up of triangles, squares, rectangles, semicircles, and other two-dimensional figures.	Figures that have exactly the same size and shape.
square	
coordinate plane	cube
A coordinate plane is formed by the intersection of	A rectangular prism with 6 congruent square faces.
a horizontal number line, usually called the <i>x</i> -axis, and a vertical number line, usually called the <i>y</i> -axis.	
The horizontal number line is usually called the $\frac{y}{x-axis}$. $\frac{y}{y}$ Quadrant I The horizontal number line is usually called the $\frac{y}{x-axis}$. $\frac{y}{y}$ Quadrant I The vertical number line is usually called the $\frac{y}{y-axis}$. $\frac{y}{y}$ The vertical number line is usually called the $\frac{y}{y-axis}$. The origin is at (0, 0).	

cubic units	data
The units volume is measured in.	Information, often given in the form of numbers or facts.
cubic feet (ft ³), cubic meters (m ³)	
decimal	denominator
A number that is written using the base-ten place value system. Each place value is ten times the	The number below the fraction bar in a fraction.
place value to the right.	In the fraction $\frac{2}{5}$, the denominator is 5.
The decimal 2.15 represents 2 ones plus 1 tenth plus 5 hundredths, or two and fifteen hundredths.	
diagonal	diameter (of a circle)
A line segment that connects two non-adjacent vertices of a polygon.	The distance across a circle through the center.
	See circumference.
diagonal of a rectangle	
difference	Distributive Property
The result when one number is subtracted from another number.	To multiply a sum or difference by a number, multiply each number in the sum or difference by the number outside the parentheses. Then evaluate.
The difference of 4 and 3 is $4 - 3$, or 1.	3(2+9) = 3(2) + 3(9)
	3(2-9) = 3(2) - 3(9)

dividend	divisible
The number to be divided in a division problem.	A number is divisible by another number if the other number is a factor of the first number.
In $25 \div 5$, the dividend is 25.	30 is divisible by 5, because 5 is a factor of 30.
Division Property of Equality	Division Property of Inequality
If you divide each side of an equation by the same nonzero number, the two sides remain equal.	If you divide each side of an inequality by the same positive number, the inequality remains true.
4x = 32	4x < 8
$\frac{4x}{4} = \frac{32}{4}$	$\frac{4x}{4} < \frac{8}{4}$
x = 8	x < 2
divisor	double bar graph
The number you are dividing by in a division problem.	A bar graph that shows two sets of data on the same graph.
In 40 ÷ 5, the divisor is 5.	Average Test Scores
equation	equivalent expressions
A mathematical sentence that uses an equal sign, =, to show that two expressions are equal.	Expressions with the same value.
4x = 16, a + 7 = 21	7 + 4, 4 + 7

equivalent fractions	equivalent ratios
Fractions that represent the same number.	Two ratios that describe the same relationship.
*	
$\frac{2}{4}$ and $\frac{9}{18}$ are equivalent fractions that both	$\frac{2}{3} = \frac{4}{6}$
$\frac{1}{4}$ and $\frac{1}{18}$ are equivalent fractions that both	$\overline{3} - \overline{6}$
represent $\frac{1}{2}$.	
2	
estimate	evaluate (an algebraic expression)
noun: An approximate solution to a problem.	Substitute a number for each variable in an algebraic expression. Then use the order of
2π is about 6.28.	operations to find the value of the numerical
	expression.
verb: To find an approximate solution to a	Evaluate $3x + 5$ when $x = 6$.
problem.	3x + 5 = 3(6) + 5
You can estimate the sum of $98 + 53$ as	= 18 + 5
100 + 50, or 150.	= 23
exponent	expression
The exponent of a power is the number of times	A mathematical phrase containing numbers,
the factor is repeated.	operations, and/or variables.
The exponent of the power 2^4 is 4.	
	See numerical expression or algebraic expression.
The exponent of the power 2 is 4.	See numerical expression or algebraic expression.
The exponent of the power 2 is 4.	See numerical expression or algebraic expression.
The exponent of the power 2 is 4.	See numerical expression or algebraic expression.
The exponent of the power 2 is 4.	See numerical expression or algebraic expression.
The exponent of the power 2 is 4.	See numerical expression or algebraic expression.
factor	See numerical expression or algebraic expression.
factor	formula
factor When whole numbers other than zero are multiplied together, each number is a factor of the product.	formula An equation that shows how one variable is related to one or more other variables.
factor When whole numbers other than zero are multiplied	formula An equation that shows how one variable is related
factor When whole numbers other than zero are multiplied together, each number is a factor of the product.	formula An equation that shows how one variable is related to one or more other variables.
factor When whole numbers other than zero are multiplied together, each number is a factor of the product.	formula An equation that shows how one variable is related to one or more other variables.
factor When whole numbers other than zero are multiplied together, each number is a factor of the product.	formula An equation that shows how one variable is related to one or more other variables.
factor When whole numbers other than zero are multiplied together, each number is a factor of the product.	formula An equation that shows how one variable is related to one or more other variables.

A relationship that pairs each input with exactly one output. The ordered pairs $(0, 1)$, $(1, 2)$, $(2, 4)$, and $(3, 6)$ represent a function. Ordered Pairs Input Output $\begin{pmatrix} 0, 1 \\ (1, 2) \\ (2, 4) \\ (3, 6) \end{pmatrix}$ $\begin{pmatrix} 0 \\ 1 \\ 1 \\ 2 \\ 2 \\ 4 \\ 3 \\ 6 \end{pmatrix}$
represent a function. Ordered Pairs Input Output $\begin{pmatrix} 0, 1 \\ (1, 2) \\ (2, 4) \end{pmatrix}$ $\begin{pmatrix} 0 \\ 1 \\ 1 \\ 2 \\ 2 \\ 4 \end{pmatrix}$
Ordered PairsInputOutput $(0, 1)$ 0 1 $(1, 2)$ 1 2 $(2, 4)$ 2 4
(0, 1) $(1, 2)$ $(2, 4)$ $(1, 2)$ $(2, 4)$ $(1, 2)$ $(1, 2)$ $(2, 4)$ $(1, 2)$ $(1, 2)$ $(1, 2)$ $(1, 2)$ $(1, 2)$ $(1, 2)$ $(1, 2)$ $(1, 2)$ $(1, 2)$ $(1, 2)$ $(2, 4)$ $(1, 2)$ $(1, 2)$ $(2, 4)$ $(1, 2)$ $(1, 2)$ $(2, 4)$ $(1, 2)$ $($
$\begin{array}{c} (1,2) \\ (2,4) \end{array} \qquad \begin{array}{c} 0 \\ 1 \\ 2 \\ \end{array} \qquad \begin{array}{c} 0 \\ 1 \\ 2 \\ \end{array} \qquad \begin{array}{c} 1 \\ 2 \\ \end{array} \qquad \begin{array}{c} 1 \\ 4 \end{array}$
graph (of a function)
A representation of all the points that are solutions of a function rule.
The graph of $y = x + 2$ is shown.
y = 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0
greatest common factor (GCF)
The largest of the common factors of two or more nonzero whole numbers.
The common factors of 12 and 20 are 1, 2, and 4. So the GCF of 12 and 20 is 4.
inductive
Making conclusions from several known cases.

inequality				input
A mathematical sentence that compares expressions. It contains the symbols \langle , \rangle, \leq , or \geq . $x - 4 < 14, x + 5 \geq 67$			≥.	A number on which a function operates. <i>See function</i> .
input-outp	ut table			integers
	input-output table A table that lists the output of a function for each input		ction for	The numbers , -5 , -4 , -3 , -2 , -1 , 0 , 1 , 2 , 3 , 4 , 5 ,
cuch input.	Input, x	Output, y		, -5, -4, -5, -2, -1, 0, 1, 2, 5, 4, 5,
	1	3		
	2	4		
	3	5		
	4	6		
inverse operations Operations that "undo" each other, such as addition and subtraction or multiplication and division.			least common denominator (LCD) The least common multiple of the denominators of two or more fractions. The least common denominator of $\frac{3}{4}$ and $\frac{5}{6}$ is the least common multiple of 4 and 6, or 12.	
 least common multiple (LCM) The smallest of the common multiples of two or more nonzero whole numbers. Multiples of 10: 10, 20, 30, 40, Multiples of 15: 15, 30, 45, 60, The least common multiple of 10 and 15 is 30. 				like terms Terms that have identical variable parts. 4 and 8, 2 <i>x</i> and 7 <i>x</i>

line	line segment
A set of points that extends without end in two opposite directions.	Part of a line that consists of two points, called endpoints, and all of the points on the line between the endpoints.
<→	••
linear function	mapping diagram
A function whose graph is a line.	A way to represent a function.
y = 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0	Input Output $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
mean	measure of central tendency
The sum of the values in a data set divided by the number of data values.	A measure that represents the center of a data set.
The mean of the values 7, 4, 8, and 9 is $\frac{7+4+8+9}{4} = \frac{28}{4} = 7.$	The mean, median, and mode are all measures of central tendency.
median	mixed number
For a data set with an odd number of ordered values, the median is the middle data value. For a data set with an even number of ordered values, the median is the mean of the two middle values. The median of the data set 24, 25, 29, 33, 38 is 29 because 29 is the middle value.	A number that has a whole number part and a fraction part. $3\frac{1}{2}, 6\frac{2}{3}$

 mode The data value or values that occur most often. Data can have one mode, more than one mode, or no mode. The modes of the data set 3, 4, 4, 7, 7, 9, 12 are 4 and 7 because they occur most often. 	Multiplication Properties of Zero and One The product of any number and 0 is 0. The product of any number and 1 is that number. $5 \cdot 0 = 0$ $6 \cdot 1 = 6$
Multiplication Property of Equality If you multiply each side of an equation by the same nonzero number, the two sides remain equal. $\frac{x}{4} = 2$ $\frac{x}{4} \bullet 4 = 2 \bullet 4$ $x = 8$ Integers that are less than zero. $-1, -2, -3, -4, -5, \dots$	Multiplication Property of InequalityIf you multiply each side of an inequality by the same positive number, the inequality remains true. $\frac{x}{4} < 2$ $\frac{x}{4} \bullet 4 < 2 \bullet 4$ $x < 8$ negative numberA number less than 0. $-0.25, -10, -500$
number line A line whose points are associated with numbers that increase from left to right. $4 - 3 - 2 - 1 0 1 2 3 4$	numerator The number above the fraction bar in a fraction. In the fraction $\frac{2}{5}$, the numerator is 2.

numerical expression	order of operations
An expression that contains only numbers and operations. $12 + 6, 18 + 3 \times 4$	The order in which to perform operations when evaluating expressions with more than one operation.
12 + 0, 16 + 3 × 4	To evaluate $5 + 2 \times 3$, you perform the multiplication before the addition.
ordered pair A pair of numbers (x, y) used to locate a point in a coordinate plane. The first number is the <i>x</i> -coordinate, and the second number is the <i>y</i> -coordinate.	origin The point, represented by the ordered pair (0, 0), where the <i>x</i> -axis and the <i>y</i> -axis meet in a coordinate plane. <i>See coordinate plane</i> .
The <i>x</i> -coordinate of the point $(-2, 1)$ is -2 , and	
the y-coordinate is 1.	
outlier	output
	-
A data value that is much greater or much less than the other values.	A number produced by evaluating a function using a given input.
-	· · · · ·
than the other values. In the data set 23, 42, 33, 117, 36, and 40, the	a given input.
than the other values. In the data set 23, 42, 33, 117, 36, and 40, the	a given input.
than the other values. In the data set 23, 42, 33, 117, 36, and 40, the	a given input.
than the other values. In the data set 23, 42, 33, 117, 36, and 40, the outlier is 117.	a given input. See function.
than the other values. In the data set 23, 42, 33, 117, 36, and 40, the outlier is 117. overestimate	a given input. <i>See function.</i> parallel (lines)

percent
The number of parts per one hundred.
$37\% = 37 \text{ out of } 100 = \frac{37}{100}$
pi (π) The ratio of the circumference of a circle to its diameter.
You can use 3.14 or $\frac{22}{7}$ to approximate π .
place value
The place value of each digit in a number depends on its position within the number.
In 521, 5 is in the hundreds place and has a value of 500.
point
A position in space represented with a dot.

polygon A closed plane figure made up of three or more line segments that intersect only at their endpoints. vertex	positive integers Integers that are greater than zero. 1, 2, 3, 4, 5,
positive number A number greater than 0. 0.5, 2, 100	 power A product formed from repeated multiplication by the same number or expression. A power consists of a base and an exponent. 2⁴ is a power with base 2 and exponent 4.
prime factorizationA whole number written as the product of prime numbers. $60 = 2 \times 2 \times 3 \times 5$	<pre>prime number A whole number greater than 1 whose only factors are 1 and itself. 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31,</pre>
<pre>product The result when two or more numbers are multiplied. The product of 4 and 3 is 4 × 3, or 12.</pre>	quadrants The four regions created by the intersection of the <i>x</i> -axis and the <i>y</i> -axis in a coordinate plane. <i>See coordinate plane</i> .

quadrilateral	quotient
A polygon with four sides.	The result of a division.
ripolygon with four states.	
	The quotient of 10 and 5 is $10 \div 5$, or 2.
radius (of a circle)	range (of a data set)
The distance from the center of a circle to any point on the circle.	The difference between the greatest value and the least value of a data set. The range describes how spread out the data are.
See circumference.	
	The range of the data set 12, 16, 18, 22, 27, 35 is $35 - 12 = 23$.
rate	ratio
A ratio of two quantities with different units.	A comparison of two quantities using division.
	The ratio of a to b (where $b \neq 0$) can be written
You read 3 books every 2 weeks.	as a to b , $a : b$, or $\frac{a}{b}$.
You read 3 books every 2 weeks.	as a to b , $a : b$, or $\frac{a}{b}$.
You read 3 books every 2 weeks.	as <i>a</i> to <i>b</i> , <i>a</i> : <i>b</i> , or $\frac{a}{b}$. 4 to 1, 4 : 1, or $\frac{4}{1}$
You read 3 books every 2 weeks.	
You read 3 books every 2 weeks.	
	4 to 1, 4 : 1, or $\frac{4}{1}$
ray A part of a line that has one endpoint and extends	4 to 1, 4 : 1, or $\frac{4}{1}$ reciprocals
ray A part of a line that has one endpoint and extends	4 to 1, 4 : 1, or $\frac{4}{1}$ reciprocals Two numbers whose product is 1.
ray A part of a line that has one endpoint and extends	4 to 1, 4 : 1, or $\frac{4}{1}$ reciprocals Two numbers whose product is 1.
ray A part of a line that has one endpoint and extends	4 to 1, 4 : 1, or $\frac{4}{1}$ reciprocals Two numbers whose product is 1.
ray A part of a line that has one endpoint and extends	4 to 1, 4 : 1, or $\frac{4}{1}$ reciprocals Two numbers whose product is 1.

rectangle	rectangular prism
A parallelogram with four right angles.	A three-dimensional figure that has 6 rectangular sides.
remainder	repeating decimal
If a divisor does not divide a dividend evenly, the remainder is the whole number left over after the division.	A decimal that repeats a pattern of one or more digits.
4 R 2 The remainder is 2.	$0.555 = 0.\overline{5}$
$\begin{array}{c c} $	$1.727272 = 1.\overline{72}$
round To approximate a number to a given place value. 132 rounded to the nearest ten is 130.	semicircle One half of a circle.
To approximate a number to a given place value. 132 rounded to the nearest ten is 130. simplest form of a fraction	One half of a circle.
To approximate a number to a given place value. 132 rounded to the nearest ten is 130. simplest form of a fraction A fraction is in simplest form if its numerator and	One half of a circle.
To approximate a number to a given place value. 132 rounded to the nearest ten is 130. simplest form of a fraction	One half of a circle.
To approximate a number to a given place value. 132 rounded to the nearest ten is 130. simplest form of a fraction A fraction is in simplest form if its numerator and denominator have a greatest common factor (GCF)	One half of a circle. Solution (of an equation) A value that makes an equation true.
To approximate a number to a given place value. 132 rounded to the nearest ten is 130. simplest form of a fraction A fraction is in simplest form if its numerator and denominator have a greatest common factor (GCF) of 1.	One half of a circle. Solution (of an equation) A value that makes an equation true.

solution of an inequality	solution set
A value that makes an inequality true.	The set of all solutions of an inequality.
A solution of the inequality $x + 3 > 9$ is $x = 12$.	
solve a formula	square
Find the value of one variable by substituting	A parallelogram with four right angles and four
numbers for the other variables.	sides of equal length.
$\ell = 6 \text{ in., } w = 10 \text{ in.}$	
$P = 2\ell + 2w$	
= 2(6) + 2(10)	
= 32 in.	
Subtraction Property of Equality	Subtraction Property of Inequality
If you subtract the same number from each side of	If you subtract the same number from each side of
If you subtract the same number from each side of	If you subtract the same number from each side of
If you subtract the same number from each side of an equation, the two sides remain equal.	If you subtract the same number from each side of an inequality, the inequality remains true.
If you subtract the same number from each side of an equation, the two sides remain equal.	If you subtract the same number from each side of an inequality, the inequality remains true. x + 4 > 5
If you subtract the same number from each side of an equation, the two sides remain equal. x + 4 = 5 $-4 - 4$	If you subtract the same number from each side of an inequality, the inequality remains true. $x + 4 > 5$ $\underline{-4} \underline{-4}$
If you subtract the same number from each side of an equation, the two sides remain equal. x + 4 = 5 $-4 - 4$	If you subtract the same number from each side of an inequality, the inequality remains true. $x + 4 > 5$ $\underline{-4} \underline{-4}$
If you subtract the same number from each side of an equation, the two sides remain equal. $x + 4 = 5$ $\frac{-4}{x} = -4$ $x = 1$	If you subtract the same number from each side of an inequality, the inequality remains true. $x + 4 > 5$ $\frac{-4}{x} - \frac{-4}{x}$ $x > 1$
If you subtract the same number from each side of an equation, the two sides remain equal. x + 4 = 5 $-4 - 4$ $x = 1$	If you subtract the same number from each side of an inequality, the inequality remains true. $x + 4 > 5$ $\frac{-4}{-4} - 4$ $x > 1$ surface area of a solid
If you subtract the same number from each side of an equation, the two sides remain equal. $x + 4 = 5$ $\frac{-4}{x} = -4$ $x = 1$	If you subtract the same number from each side of an inequality, the inequality remains true. $x + 4 > 5$ $\frac{-4}{x} - \frac{-4}{x}$ $x > 1$
If you subtract the same number from each side of an equation, the two sides remain equal. x + 4 = 5 $-4 - 4$ $x = 1$	If you subtract the same number from each side of an inequality, the inequality remains true. x + 4 > 5 $-4 - 4$ $x > 1surface area of a solidThe sum of the areas of the outside surfaces of asolid.$
If you subtract the same number from each side of an equation, the two sides remain equal. x + 4 = 5 $-4 - 4$ $x = 1sumThe result when two or more numbers are added.$	If you subtract the same number from each side of an inequality, the inequality remains true. x + 4 > 5 $-4 - 4$ $x > 1surface area of a solidThe sum of the areas of the outside surfaces of asolid.$
If you subtract the same number from each side of an equation, the two sides remain equal. x + 4 = 5 $-4 - 4$ $x = 1sumThe result when two or more numbers are added.$	If you subtract the same number from each side of an inequality, the inequality remains true. x + 4 > 5 $-4 - 4$ $x > 1surface area of a solidThe sum of the areas of the outside surfaces of asolid.$
If you subtract the same number from each side of an equation, the two sides remain equal. x + 4 = 5 $-4 - 4$ $x = 1sumThe result when two or more numbers are added.$	If you subtract the same number from each side of an inequality, the inequality remains true. x + 4 > 5 $-4 - 4$ $x > 1surface area of a solidThe sum of the areas of the outside surfaces of asolid.$
If you subtract the same number from each side of an equation, the two sides remain equal. x + 4 = 5 $-4 - 4$ $x = 1sumThe result when two or more numbers are added.$	If you subtract the same number from each side of an inequality, the inequality remains true. x + 4 > 5 $-4 - 4$ $x > 1surface area of a solidThe sum of the areas of the outside surfaces of asolid.$
If you subtract the same number from each side of an equation, the two sides remain equal. $x + 4 = 5$ $\frac{-4}{x} = -4$ $x = 1$ sum The result when two or more numbers are added.	If you subtract the same number from each side of an inequality, the inequality remains true. x + 4 > 5 $= -4 = -4$ $x > 1surface area of a solidThe sum of the areas of the outside surfaces of asolid.$

terminating decimal	terms
A decimal that ends. A decimal that can be written as a fraction.	The parts of an expression that are added together.
1.5, 2.58, 100, 1	The terms of $4x + 7$ are $4x$ and 7.
1.5, 2.58, 100.1	
three-dimensional figure	trapezoid
A figure that has length, width, and depth.	A quadrilateral with exactly one pair of parallel sides.
triangle A polygon with three sides.	two-dimensional figure A figure that has only length and width.
	in ingene une nes only rengen and wrann
two-step equation	underestimate
two-step equation An equation that contains two different operations.	underestimate An estimate that is less than the exact answer.
	An estimate that is less than the exact answer.
An equation that contains two different operations.	
An equation that contains two different operations.	An estimate that is less than the exact answer. $35\frac{7}{8} \times 8\frac{1}{3} \approx 35 \times 8$
An equation that contains two different operations.	An estimate that is less than the exact answer. $35\frac{7}{8} \times 8\frac{1}{3} \approx 35 \times 8$

unit cost	unit rate
A unit rate for cost per unit.	A rate that compares a quantity to one unit of another quantity.
The cost per bottle is \$3.	The speed limit is 65 miles per hour.
variable	vertex of a polygon
A symbol, usually a letter, that represents one or more numbers.	A point at which two sides of a polygon meet. The plural of vertex is vertices.
x is a variable in $2x + 1$.	See polygon.
volume	whole numbers
A measure of the amount of space that a three- dimensional figure occupies. Volume is measured	whole numbers The numbers 0, 1, 2, 3, 4,
A measure of the amount of space that a three-	
A measure of the amount of space that a three- dimensional figure occupies. Volume is measured in cubic units such as cubic feet (ft^3) or cubic meters (m^3) .	
A measure of the amount of space that a three- dimensional figure occupies. Volume is measured in cubic units such as cubic feet (ft^3) or cubic meters (m^3) . 4 ft 12 ft	
A measure of the amount of space that a three- dimensional figure occupies. Volume is measured in cubic units such as cubic feet (ft^3) or cubic meters (m^3) . 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +	The numbers 0, 1, 2, 3, 4,
A measure of the amount of space that a three- dimensional figure occupies. Volume is measured in cubic units such as cubic feet (ft^3) or cubic meters (m^3) . 4 ft 12 ft	The numbers 0, 1, 2, 3, 4, x-coordinate The first coordinate in an ordered pair, which
A measure of the amount of space that a three- dimensional figure occupies. Volume is measured in cubic units such as cubic feet (ft ³) or cubic meters (m ³). 1 + 12 + 12 + 12 + 12 + 12 + 12 + 12 +	The numbers 0, 1, 2, 3, 4, <i>x</i> -coordinate
A measure of the amount of space that a three- dimensional figure occupies. Volume is measured in cubic units such as cubic feet (ft ³) or cubic meters (m ³). $ \begin{array}{r} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$	The numbers 0, 1, 2, 3, 4, x-coordinate The first coordinate in an ordered pair, which indicates how many units to move to the left
A measure of the amount of space that a three- dimensional figure occupies. Volume is measured in cubic units such as cubic feet (ft ³) or cubic meters (m ³). $ \begin{array}{r} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$	The numbers 0, 1, 2, 3, 4, x-coordinate The first coordinate in an ordered pair, which indicates how many units to move to the left or right.
A measure of the amount of space that a three- dimensional figure occupies. Volume is measured in cubic units such as cubic feet (ft^3) or cubic meters (m^3) . $4 ft$ $12 ft$ $V = \ell wh = 12(3)(4) = 144 ft^3$ x-axis The horizontal number line in a coordinate plane.	The numbers 0, 1, 2, 3, 4, x-coordinate The first coordinate in an ordered pair, which indicates how many units to move to the left or right.

y-axis	<i>y</i> -coordinate
The vertical number line in a coordinate plane.	The second coordinate in an ordered pair, which indicates how many units to move up or down.
See coordinate plane.	
	In the ordered pair $(3, 5)$, the <i>y</i> -coordinate is 5.