# **11.2** Special Right Triangles For use with Exploration 11.2

**Essential Question** What is the relationship among the side lengths of 45°-45°-90° triangles? 30°-60°-90° triangles?

### **EXPLORATION:** Side Ratios of an Isosceles Right Triangle

#### Go to BigIdeasMath.com for an interactive tool to investigate this exploration.

#### Work with a partner.

- **a.** Use dynamic geometry software to construct an isosceles right triangle with a leg length of 4 units.
- **b.** Find the acute angle measures. Explain why this triangle is called a  $45^{\circ}-45^{\circ}-90^{\circ}$  triangle.



**d.** Repeat parts (a) and (c) for several other isosceles right triangles. Use your results to write a conjecture about the ratios of the side lengths of an isosceles right triangle.

## 11.2 Special Right Triangles (continued)

### **EXPLORATION:** Side Ratios of a 30°-60°-90° Triangle

#### Go to BigIdeasMath.com for an interactive tool to investigate this exploration.

#### Work with a partner.

a. Use dynamic geometry software to construct a right triangle with acute angle measures of 30° and 60° (a 30°-60°-90° triangle), where the shorter leg length is 3 units.



c. Repeat parts (a) and (b) for several other  $30^{\circ}-60^{\circ}-90^{\circ}$  triangles. Use your results to write a conjecture about the ratios of the side lengths of a  $30^{\circ}-60^{\circ}-90^{\circ}$  triangle.

## **Communicate Your Answer**

**3.** What is the relationship among the side lengths of 45°-45°-90° triangles? 30°-60°-90° triangles?

Name



## Theorems

## 45°-45°-90° Triangle Theorem

In a 45°-45°-90° triangle, the hypotenuse is  $\sqrt{2}$  times as long as each leg.

#### Notes:



hypotenuse = leg •  $\sqrt{2}$ 

### 30°-60°-90° Triangle Theorem

In a 30°-60°-90° triangle, the hypotenuse is twice as long as the shorter leg, and the longer leg is  $\sqrt{3}$  times as long as the shorter leg.

#### Notes:

# Worked-Out Examples

#### Example #1

Find the value of x. Write your answer in simplest form.

hypotenuse = leg •  $\sqrt{2}$   $x = 5\sqrt{2} • \sqrt{2}$   $x = 5\sqrt{4}$ x = 5 • 2 = 10





hypotenuse = shorter leg • 2 longer leg = shorter leg •  $\sqrt{3}$ 

Date

Date

**11.2 Practice** (continued)

#### Example #2

Find the values of x and y. Write your answers in simplest form.



# **Practice A**

In Exercises 1–4, find the value of *x*. Write your answer in simplest form.



In Exercises 5–7, find the values of x and y. Write your answers in simplest form.



## **11.2 Practice** (continued)

In Exercises 8 and 9, sketch the figure that is described. Find the indicated length. Round decimal answers to the nearest tenth.

- The length of a diagonal in a square is 32 inches. Find the perimeter of the square.
- 9. An isosceles triangle with 30° base angles has an altitude of  $\sqrt{3}$  meters. Find the length of the base of the isosceles triangle.

**10.** Find the area of  $\triangle DEF$ . Round decimal answers to the nearest tenth.



# **Practice B**

In Exercises 1 and 2, copy and complete the table. Write your answers in simplest form.



- **3.** The side lengths of a triangle are given. Determine whether each triangle is a 45°-45°-90° triangle, a 30°-60°-90° triangle, or neither.
  - **a.** 5, 10,  $5\sqrt{3}$  **b.** 7, 7,  $7\sqrt{3}$  **c.** 6, 6,  $6\sqrt{2}$

In Exercises 4–6, find the values of the variables. Write your answers in simplest form.



**7.** You build a two-person tent, as shown. How many square feet of material is needed to make the tent, assuming the tent has a floor?

