10.6

Proportionality Theorems

For use with Exploration 10.6

Essential Question What proportionality relationships exist in a triangle intersected by an angle bisector or by a line parallel to one of the sides?

EXPLORATION: Discovering a Proportionality Relationship

Go to *BigIdeasMath.com* for an interactive tool to investigate this exploration.

Work with a partner. Use dynamic geometry software to draw any $\triangle ABC$.

a. Construct \overline{DE} parallel to \overline{BC} with endpoints on \overline{AB} and \overline{AC} , respectively.

- **b.** Compare the ratios of *AD* to *BD* and *AE* to *CE*.
- **c.** Move \overline{DE} to other locations parallel to \overline{BC} with endpoints on \overline{AB} and \overline{AC} , and repeat part (b).

d. Change $\triangle ABC$ and repeat parts (a)–(c) several times. Write a conjecture that summarizes your results.

10.6 Proportionality Theorems (continued)

2

EXPLORATION: Discovering a Proportionality Relationship

Go to BigIdeasMath.com for an interactive tool to investigate this exploration.

Work with a partner. Use dynamic geometry software to draw any $\triangle ABC$.

a. Bisect $\angle B$ and plot point D at the intersection of the angle bisector and \overline{AC} .

b. Compare the ratios of *AD* to *DC* and *BA* to *BC*.

c. Change $\triangle ABC$ and repeat parts (a) and (b) several times. Write a conjecture that summarizes your results.

Communicate Your Answer

3. What proportionality relationships exist in a triangle intersected by an angle bisector or by a line parallel to one of the sides?

4. Use the figure at the right to write a proportion.

10.6 Practice For use after Lesson 10.6

Theorems

Triangle Proportionality Theorem

If a line parallel to one side of a triangle intersects the other two sides, then it divides the two sides proportionally.

Notes:

Converse of the Triangle Proportionality Theorem

If a line divides two sides of a triangle proportionally, then it is parallel to the third side.

Notes:

Three Parallel Lines Theorem

If three parallel lines intersect two transversals, then they divide the transversals proportionally.

Notes:

Triangle Angle Bisector Theorem

If a ray bisects an angle of a triangle, then it divides the opposite side into segments whose lengths are proportional to the lengths of the other two sides.

Notes:

R S U

10.6 Practice (continued)

Worked-Out Examples

Example #1

Find the length of \overline{AB} .

 $\frac{AE}{ED} = \frac{AB}{BC}$ $\frac{14}{12} = \frac{AB}{18}$ $\frac{7}{6} = \frac{AB}{18}$ $\frac{7 \cdot 18}{6} = AB$ 21 = ABThe length of \overline{AB} is 21 units.

Example #2

Determine whether $\overline{KM} \parallel \overline{JN}$.

If $\frac{LM}{MN} = \frac{LK}{KJ}$, then $\overline{KM} \parallel \overline{JN}$. $\frac{LM}{MN} = \frac{24}{15} = \frac{8}{5}$ $\frac{LK}{KJ} = \frac{18}{10} = \frac{9}{5}$ Because $\frac{8}{5} \neq \frac{9}{5}$, \overline{KM} is not parallel to \overline{JN} .

Practice A

In Exercises 1 and 2, find the length of \overline{AB} .

Date____

10.6 Practice (continued)

In Exercises 3 and 4, determine whether $\overline{AB} \parallel \overline{XY}$.

In Exercises 5–7, use the diagram to complete the proportion.

In Exercises 8 and 9, find the value of the variable.

Practice B

In Exercises 1 and 2, find the length of the indicated line segment.

In Exercises 3 and 4, find the value of the variable.

5. The figure shows parallelogram *ABCD*, where *E* and *F* are the midpoints of \overline{BC} and \overline{AD} respectively. Your friend claims that \overline{EF} is parallel to \overline{AB} and \overline{CD} by the Three Parallel Lines Theorem. Is your friend correct? Explain your reasoning.

6. The figure shows a triangle such that the length of \overline{LP} is nine less than twice the length of \overline{PN} . Do you have enough information to find *LP* and *PN*? Explain your reasoning. If so, find *LP* and *PN*.

7. Use the diagram to write a two-column proof.

Given \overline{WY} bisects $\angle XYZ$. \overline{YW} bisects $\angle XWZ$. $YZ \cong WZ$ Prove WXYZ is a kite. W

Ζ