10.2

Similarity and Transformations For use with Exploration 10.2

Essential Question When a figure is translated, reflected, rotated, or dilated in the plane, is the image always similar to the original figure?

EXPLORATION: Dilations and Similarity

Go to *BigIdeasMath.com* for an interactive tool to investigate this exploration.

Work with a partner.

- **a.** Use dynamic geometry software to draw any triangle and label it $\triangle ABC$.
- **b.** Dilate the triangle using a scale factor of 3. Is the image similar to the original triangle? Justify your answer.

10.2 Similarity and Transformations (continued)

EXPLORATION: Rigid Motions and Similarity

Go to *BigIdeasMath.com* for an interactive tool to investigate this exploration.

Work with a partner.

- **a.** Use dynamic geometry software to draw any triangle.
- **b.** Copy the triangle and translate it 3 units left and 4 units up. Is the image similar to the original triangle? Justify your answer.
- **c.** Reflect the triangle in the *y*-axis. Is the image similar to the original triangle? Justify your answer.
- **d.** Rotate the original triangle 90° counterclockwise about the origin. Is the image similar to the original triangle? Justify your answer.

Communicate Your Answer

3. When a figure is translated, reflected, rotated, or dilated in the plane, is the image always similar to the original figure? Explain your reasoning.

4. A figure undergoes a composition of transformations, which includes translations, reflections, rotations, and dilations. Is the image similar to the original figure? Explain your reasoning.

10.2 Practice For use after Lesson 10.2

Notes:

Worked-Out Examples

Example #1

Graph Δ FGH with vertices F(-2, 2), G(-2, -4), and H(-4, -4) and its image after the similarity transformation.

Translation: $(x, y) \rightarrow (x + 3, y + 1)$

Dilation: $(x, y) \rightarrow (2x, 2y)$

Translation $(x, y) \rightarrow (x + 3, y + 1)$: $F(-2, 2) \rightarrow F'(1, 3)$, $G(-2, -4) \rightarrow G'(1, -3)$, $H(-4, -4) \rightarrow H'(-1, -3)$ Dilation $(x, y) \rightarrow (2x, 2y)$: $F'(1, 3) \rightarrow F''(2, 6)$, $G'(1, -3) \rightarrow G''(2, -6)$, $H'(-1, -3) \rightarrow H''(-2, -6)$

Example #2

Determine whether the polygons with the given vertices are similar. Use transformations to explain your reasoning.

A(6, 0), *B*(9, 6), *C*(12, 6) and *D*(0, 3), *E*(1, 5), *F*(2, 5)

yes; *Sample answer:* $\triangle ABC$ can be mapped to $\triangle DEF$ by a dilation with center at the origin and a scale factor of $\frac{1}{3}$ followed by a translation of 2 units left and 3 units up.

10.2 Practice (continued)

Practice A

In Exercises 1–3, graph the polygon with the given vertices and its image after the similarity transformation.

1. A(3, 6), B(2, 5), C(4, 3), D(5, 5)

Translation: $(x, y) \rightarrow (x - 5, y - 3)$

Dilation: $(x, y) \rightarrow (3x, 3y)$

2. R(12, 8), S(8, 0), T(0, 4)

Dilation: $(x, y) \rightarrow \left(\frac{1}{4}x, \frac{1}{4}y\right)$

Reflection: in the *y*-axis

		y												
	8													
	6													
	⊥ ⊿.													
	<u> </u>													
	2													
	_													
-														>
-2			2	2	4	1	6	5	٤	3	1	0	1	2 x
	<u> </u>	1												

3. X(9, 6), Y(3, 3), Z(3, 6)

Rotation: 90° about the origin

Dilation:
$$(x, y) \rightarrow \left(\frac{2}{3}x, \frac{2}{3}y\right)$$

10.2 Practice (continued)

In Exercises 4–6,	describe the similarity transformation that maps the preimage to
the image.	

Name_

Practice B

In Exercises 1 and 2, graph $\triangle CDE$ with vertices C(1, 3), D(5, 3), and E(2, 1) and its image after the similarity transformation.

- **1. Translation:** $(x, y) \rightarrow (x 5, y 2)$ **2. Reflection:** in the x-axis**Dilation:** $(x, y) \rightarrow (-0.5x, -0.5y)$ **Dilation:** $(x, y) \rightarrow (2x, 2y)$
- 3. Describe a similarity transformation that maps the black preimage to the dashed image.

In Exercises 4 and 5, determine whether the polygons with the given vertices are similar. Use transformations to explain your reasoning.

4. *A*(−4, 0), *B*(−4, −2), *C*(−2, −1) and *D*(4, 6), *E*(4, 2), *F*(8, 2)

 $\triangle ABE$ is similar to $\triangle DBC$.

5.
$$W(0, -1), X(-5, -1), Y(-3, 2), Z(-1, 2)$$
 and $K(0, -1), L(5, 2), M(3, 4), N(1, 4)$

6. Prove that the figures are similar.

Given $\angle ABE \cong \angle DBC$, $\overline{AE} \parallel \overline{CD}$

Prove

- 7. Is it possible to draw two circles that are not similar? Explain your reasoning.
- **8.** The image shows what text often looks like when viewed through a magnifying glass. Does this represent a similarity transformation? Explain your reasoning.

9. Your friend draws a sketch of triangles in his notebook like the one shown here. He then claims there are the same number of congruent triangles and similar triangles. Is your friend correct? Explain.

