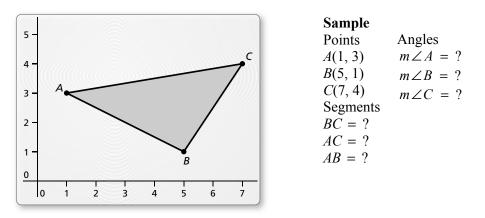
9.4


Indirect Proof and Inequalities in One Triangle For use with Exploration 9.4

Essential Question How are the sides related to the angles of a triangle? How are any two sides of a triangle related to the third side?

EXPLORATION: Comparing Angle Measures and Side Lengths

Go to *BigIdeasMath.com* for an interactive tool to investigate this exploration.

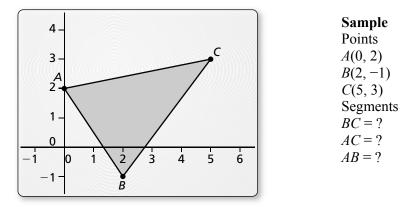
Work with a partner. Use dynamic geometry software. Draw any scalene $\triangle ABC$.

a. Find the side lengths and angle measures of the triangle.

b. Order the side lengths. Order the angle measures. What do you observe?

c. Drag the vertices of $\triangle ABC$ to form new triangles. Record the side lengths and angle measures in the following table. Write a conjecture about your findings.

BC	AC	AB	m∠A	m∠B	m∠C


9.4 Indirect Proof and Inequalities in One Triangle (continued)

EXPLORATION: A Relationship of the Side Lengths of a Triangle

Go to BigIdeasMath.com for an interactive tool to investigate this exploration.

Work with a partner. Use dynamic geometry software. Draw any $\triangle ABC$.

- **a.** Find the side lengths of the triangle.
- **b.** Compare each side length with the sum of the other two side lengths.

c. Drag the vertices of $\triangle ABC$ to form new triangles and repeat parts (a) and (b). Organize your results in a table. Write a conjecture about your findings.

BC	AC	AB	Comparisons

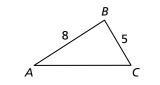
Communicate Your Answer

- **3.** How are the sides related to the angles of a triangle? How are any two sides of a triangle related to the third side?
- 4. Is it possible for a triangle to have side lengths of 3, 4, and 10? Explain.

Core Concepts

How to Write an Indirect Proof (Proof by Contradiction)

- **Step 1** Identify the statement you want to prove. Assume temporarily that this statement is false by assuming that its opposite is true.
- **Step 2** Reason logically until you reach a contradiction.
- **Step 3** Point out that the desired conclusion must be true because the contradiction proves the temporary assumption false.

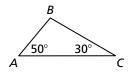

Notes:

Theorems

Triangle Longer Side Theorem

If one side of a triangle is longer than another side, then the angle opposite the longer side is larger than the angle opposite the shorter side.

Notes:

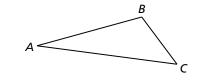

AB > BC, so $m \angle C > m \angle A$.

9.4 Practice (continued)

Triangle Larger Angle Theorem

If one angle of a triangle is larger than another angle, then the side opposite the larger angle is longer than the side opposite the smaller angle.

Notes:



 $m \angle A > m \angle C$, so BC > AB.

Triangle Inequality Theorem

The sum of the lengths of any two sides of a triangle is greater than the length of the third side.

AB + BC > AC AC + BC > AB AB + AC > BC

Notes:

Worked-Out Examples

Example #1

Determine which two statements contradict each other. Explain your reasoning.

(A) $\triangle LMN$ is a right triangle.

(B)
$$\angle L = \angle N$$

 \bigcirc $\triangle LMN$ is equilateral.

A and C; The angles of an equilateral triangle are always 60°. So, an equilateral triangle cannot be a right triangle.

Example #2

Is it possible to construct a triangle with the given side lengths? If not, explain why not.

6, 7, 11

 $6 + 7 = 13 \rightarrow 13 > 11$ Yes $7 + 11 = 18 \rightarrow 18 > 6$ Yes

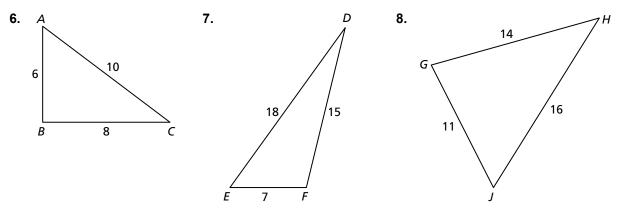
 $11 + 6 = 17 \rightarrow 17 > 7 \quad \text{Yes}$

yes; The sum of any two side lengths of a triangle is greater than the length of the third side.

Date_

9.4 Practice (continued)

Practice A


In Exercises 1–3, write the first step in an indirect proof of the statement.

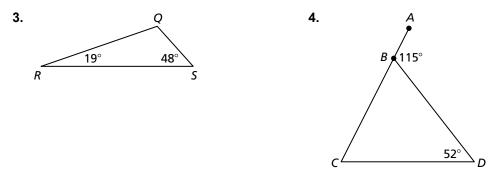
- **1.** Not all the students in a given class can be above average.
- 2. No number equals another number divided by zero.
- **3.** The square root of 2 is not equal to the quotient of any two integers.

In Exercises 4 and 5, determine which two statements contradict each other. Explain your reasoning.

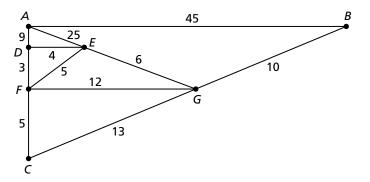
4. A	ΔLMN is equilateral.	5. A	$\triangle ABC$ is a right triangle.
В	$LM \neq MN$	В	$\angle A$ is acute.
С	$\angle L = \angle M$	С	$\angle C$ is obtuse.

In Exercises 6–8, list the angles of the given triangle from smallest to largest.

In Exercises 9–12, is it possible to construct a triangle with the given side lengths? If not, explain why not.


- **9.** 3, 12, 17 **10.** 5, 21, 16 **11.** 8, 5, 7 **12.** 10, 3, 11
- **13.** A triangle has two sides with lengths 5 inches and 13 inches. Describe the possible lengths of the third side of the triangle.

Practice **B**


In Exercises 1 and 2, list the angles of the given triangle from smallest to largest.

In Exercises 3 and 4, list the sides of the given triangle from shortest to longest.

- 5. Write an indirect proof that a right triangle has exactly two acute angles.
- 6. Is it possible to construct a triangle with side lengths 5(2x 6), 3x + 80, and $x^2 + 41$ if x = 9? Explain.
- **7.** The figure shows several triangles, with labeled side lengths. Which of the triangles are labeled correctly? Explain.

8. Your friend claims that if you are given the three angle measures of a triangle, you can construct a triangle that obeys the Triangle Inequality Theorem, even if you are not given any of the side lengths. Is your friend correct? Explain your reasoning.