
CHAPTER 9

Relationships Within Triangles

9.1 Proving Geometric Relationships	281
9.2 Perpendicular and Angle Bisectors	289
9.3 The Triangle Midsegment Theorem	295
9.4 Indirect Proof and Inequalities in One Triangle	301
9.5 Inequalities in Two Triangles	307

Chapter 9 Maintaining Mathematical Proficiency

Write an equation of the line passing through point *P* that is perpendicular to the given line.

1. P(5,2), y = 2x + 6 **2.** P(4,2), y = 6x - 3 **3.** P(-1,-2), y = -3x + 6

4.
$$P(-8,3), y = 3x - 1$$
 5. $P(6,7), y = x - 5$ **6.** $P(3,7), y = \frac{1}{4}x + 4$

Write the sentence as an inequality.

- 7. A number *g* is at least 4 and no more than 12.
- 8. A number *r* is more than 2 and less than 7.
- **9.** A number q is less than or equal to 6 or greater than 1.
- **10.** A number p is fewer than 17 or no less than 5.
- **11.** A number k is greater than or equal to -4 and less than 1.

9.1

Proving Geometric Relationships For use with Exploration 9.1

Essential Question How can you prove a mathematical statement?

A **proof** is a logical argument that uses deductive reasoning to show that a statement is true.

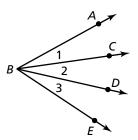
EXPLORATION: Writing Reasons in a Proof

Work with a partner. Four steps of a proof are shown. Write the reasons for each statement.

Given AD = AB + AC

D

Prove CD = AB


STATEMENTS	REASONS
1. AD = AB + AC	1. Given
2. AC + CD = AD	2
3. AC + CD = AB + AC	3
4. CD = AB	4

EXPLORATION: Writing Steps in a Proof

Work with a partner. Five steps of a proof are shown. Complete the statements that correspond to each reason.

Given $m \angle ABD = m \angle CBE$

Prove $m \angle 1 = m \angle 3$

2

9.1 **Proving Geometric Relationships** (continued)

EXPLORATION: Writing Steps in a Proof (continued)

STATEMENTS	REASONS
1. $m \angle ABD = m \angle 1 + m \angle 2$	1. Angle Addition Postulate
2. <i>m∠CBE</i> =	2. Angle Addition Postulate
3	3. Given
$4. m \angle 1 + m \angle 2 = m \angle 2 + m \angle 3$	4. Substitution Property of Equality
5	5. Subtraction Property of Equality

Communicate Your Answer

3. How can you prove a mathematical statement?

4. In Exploration 2, can you prove that $m \angle 1 = m \angle 2$? Explain your reasoning.

Notes:

Worked-Out Examples

Example #1

Copy and complete the proof.	x
Statement about congruent angles	$ \xrightarrow{1}_{2} $
Given $\angle 1 \cong \angle 3$	$\xrightarrow{3}{4}$
Prove $\angle 2 \cong \angle 4$	λ^{4}

STATEMENTS	REASONS
1. $\angle 1 \cong \angle 3$	1. Given
2. $\angle 1 \cong \angle 2, \angle 3 \cong \angle 4$	2. Vertical Angles Congruence Theorem
3. $\angle 2 \cong \angle 3 \text{ (or } \angle 4 \cong \angle 1 \text{)}$	3. Transitive Property of Congruence
4. ∠2 ≅ ∠4	4. Transitive Property of Congruence

Example #2

Copy and complete the paragraph proof. Then write a two-column proof.

Perpendicular Transversal Theorem

Given $h \parallel k, j \perp h$

Prove $j \perp k$

Line *h* and line *k* are parallel, and line *j* and line *h* are perpendicular. By the definition of perpendicular lines, $m \angle 2 = _$. By the ______, $\angle 2 \cong \angle 6$. By the definition of congruent angles, _______. By the Transitive Property of Equality, _____ = 90°. By the ______

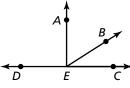
Paragraph Proof

Given $h \parallel k, j \perp h$

Prove $j \perp k$

Line *h* and line *k* are parallel, and line *j* and line *h* are perpendicular. By the definition of perpendicular lines, $m \angle 2 = 90^\circ$. By the Corresponding Angles Theorem, $\angle 2 \cong \angle 6$. By the definition of congruent angles, $m \angle 2 = m \angle 6$. By the Transitive Property of Equality, $m \angle 6 = 90^\circ$. By the definition of perpendicular lines, $j \perp k$.

56 78


9.1 **Practice** (continued)

Two-Column Proof

STATEMENTS	REASONS
1. $h \parallel k, j \perp h$	1. Given
2. $m \angle 2 = 90^{\circ}$	2. Definition of perpendicular lines
3. $\angle 2 \cong \angle 6$	3. Corresponding Angles Theorem
4. $m \angle 2 = m \angle 6$	4. Definition of congruent angles
5. $m \angle 6 = 90^{\circ}$	5. Transitive Property of Equality
6. $j \perp k$	6. Definition of perpendicular lines

Practice A

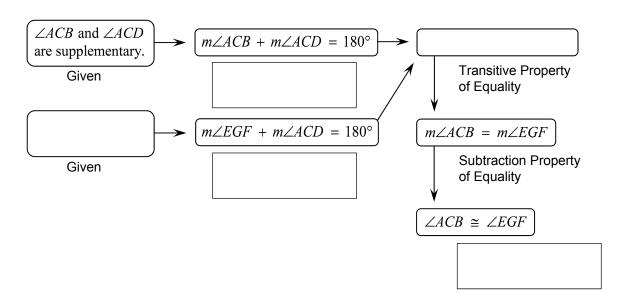
Complete the proof.
 Given ∠AEB is a complement of ∠BEC.
 Prove m∠AED = 90°

STATEMENTS	REASONS
1. $\angle AEB$ is a complement of $\angle BEC$.	1. Given
2	2. Definition of complementary angles
3. $m \angle AEC = m \angle AEB + m \angle BEC$	3
4. $m \angle AEC = 90^{\circ}$	4
5. $m \angle AED + m \angle AEC = 180^{\circ}$	5. Definition of supplementary angles
6	6. Substitution Property of Equality
7. $m \angle AED = 90^{\circ}$	7

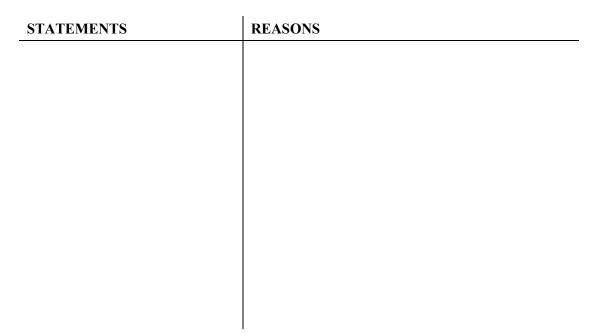
2. Write a two-column proof. Given M is the midpoint of \overline{RT} . Prove $MT = RS + SM$	$\begin{array}{ccc} \bullet & \bullet & \bullet \\ R & S & M & T \end{array}$
STATEMENTS	REASONS

В

G


F→

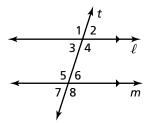
9.1 Practice (continued)


3. Complete the flowchart proof. Then write a two-column proof.

Given $\angle ACB$ and $\angle ACD$ are supplementary. $\angle EGF$ and $\angle ACD$ are supplementary.

Prove $\angle ACB \cong \angle EGF$

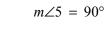
Two-Column Proof

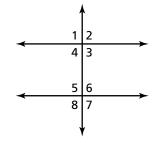


Practice B

1. Copy and complete the proof of the Alternate Interior Angles Theorem.

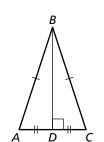
Given $\ell \parallel m$


Prove $\angle 4 \cong \angle 5$


STATEMENTS	REASONS
1. ℓ <i>m</i>	1. Given
2. ∠4 ≅ ∠8	2
3	3. Vertical Angles Congruence Theorem
4. ∠4 ≅ ∠5	4. Transitive Property of Congruence

2. Copy and complete the flowchart proof. Then write a paragraph proof.

Given $\angle 5 \cong \angle 3$


Prove $m \angle 1 = 90^{\circ}$

$$\angle 5 \cong \angle 3$$
 $m \angle 5 \cong m \angle 3$
 $m \angle 3 = 90^{\circ}$
 $\angle 3 \cong \angle 1$
 $m \angle 3 = m \angle 1$
 Substitution

 Given
 Given
 Given
 Given
 Given
 Given
 Given

 Your friend says that there is not enough information to prove that ∠ABD ≅ ∠CBD. Is your friend correct? Explain your reasoning.

