8.2

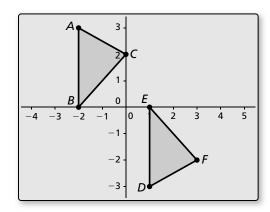
Congruent Polygons

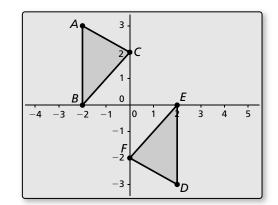
For use with Exploration 8.2

Essential Question Given two congruent triangles, how can you use rigid motions to map one triangle to the other triangle?

EXPLORATION: Describing Rigid Motions

Work with a partner. Of the three transformations you studied in Chapter 11, which are rigid motions? Under a rigid motion, why is the image of a triangle always congruent to the original triangle? Explain you reasoning.




EXPLORATION: Finding a Composition of Rigid Motions

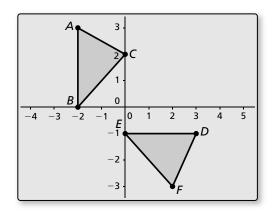
Go to *BigIdeasMath.com* for an interactive tool to investigate this exploration.

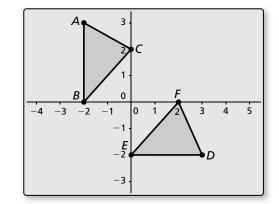
Work with a partner. Describe a composition of rigid motions that maps $\triangle ABC$ to $\triangle DEF$. Use dynamic geometry software to verify your answer.

a.
$$\triangle ABC \cong \triangle DEF$$
 b.

 $\triangle ABC \cong \triangle DEF$

2


Date____


8.2 Congruent Polygons (continued)

EXPLORATION: Finding a Composition of Rigid Motions (continued)

c. $\triangle ABC \cong \triangle DEF$

d. $\triangle ABC \cong \triangle DEF$

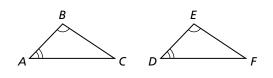
Communicate Your Answer

3. Given two congruent triangles, how can you use rigid motions to map one triangle to the other triangle?

4. The vertices of △ABC are A(1,1), B(3,2), and C(4,4). The vertices of △DEF are D(2,-1), E(0,0), and F(-1,2). Describe a composition of rigid motions that maps △ABC to △DEF.

Theorems

Properties of Triangle Congruence

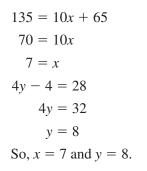

Triangle congruence is reflexive, symmetric, and transitive.

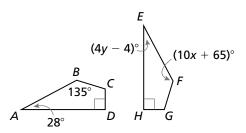
ReflexiveFor any triangle $\triangle ABC$, $\triangle ABC \cong \triangle ABC$.SymmetricIf $\triangle ABC \cong \triangle DEF$, then $\triangle DEF \cong \triangle ABC$.TransitiveIf $\triangle ABC \cong \triangle DEF$ and $\triangle DEF \cong \triangle JKL$, then $\triangle ABC \cong \triangle JKL$.Notes:

Third Angles Theorem

If two angles of one triangle are congruent to two angles of another triangle, then the third angles are also congruent.

Notes:

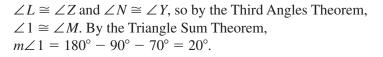

If $\angle A \cong \angle D$ and $\angle B \cong \angle E$, then $\angle C \cong \angle F$.

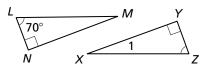

Worked-Out Examples

Example #1

Find the values of x and y.

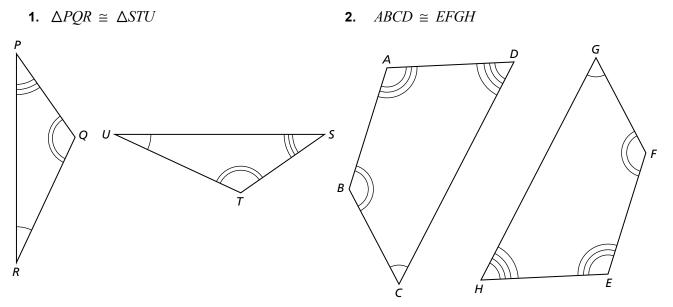
$$ABCD \cong EFGH$$



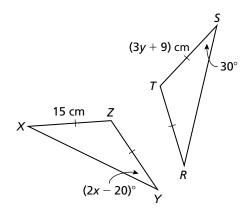


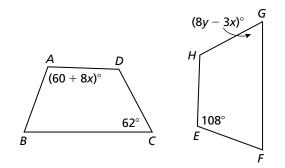
8.2 **Practice** (continued)

Example #2


Find $m \angle 1$.

Practice A

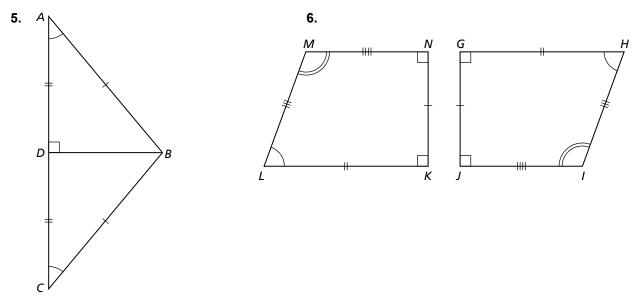

In Exercises 1 and 2, identify all pairs of congruent corresponding parts. Then write another congruence statement for the polygons.



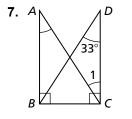
In Exercises 3 and 4, find the values of x and y.

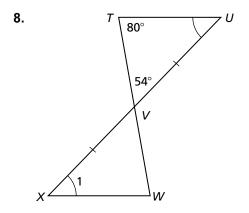
3. $\triangle XYZ \cong \triangle RST$

4. $ABCD \cong EFGH$

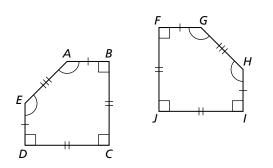

Copyright © Big Ideas Learning, LLC

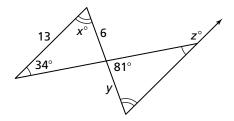
All rights reserved.


Date_____

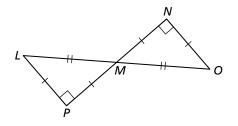

8.2 Practice (continued)

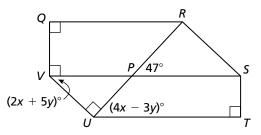
In Exercises 5 and 6, show that the polygons are congruent. Explain your reasoning.


In Exercises 7 and 8, find $m \angle 1$.



Practice B


1. In the figure, $ABCDE \cong HIJFG$. Identify all pairs of congruent corresponding parts. Then complete the congruence statement: $ABCDE \cong G$ ______.


2. Find the values of *x*, *y*, and *z*.

3. Show that the two triangles are congruent.

4. In the figure, $RSTU \cong UVQR$. Find the values of x and y and $m \angle RST$. Explain your reasoning.

5. Draw a rectangle and label it *ABCD*. Draw diagonal \overline{AC} . Are the two triangles formed congruent? Explain.