
7.2 Reflections For use with Exploration 7.2

Essential Question How can you reflect a figure in a coordinate plane?

EXPLORATION: Reflecting a Triangle Using a Reflective Device

Work with a partner. Use a straightedge to draw any triangle on paper. Label it $\triangle ABC$.

- **a.** Use the straightedge to draw a line that does not pass through the triangle. Label it *m*.
- **b.** Place a reflective device on line *m*.
- **c.** Use the reflective device to plot the images of the vertices of $\triangle ABC$. Label the images of vertices A, B, and C as A', B', and C', respectively.
- **d.** Use a straightedge to draw $\triangle A'B'C'$ by connecting the vertices.

7.2 Reflections (continued)

EXPLORATION: Reflecting a Triangle in a Coordinate Plane

Go to BigIdeasMath.com for an interactive tool to investigate this exploration.

Work with a partner. Use dynamic geometry software to draw any triangle and label it $\triangle ABC$.

- **a.** Reflect $\triangle ABC$ in the y-axis to form $\triangle A'B'C'$.
- **b.** What is the relationship between the coordinates of the vertices of $\triangle ABC$ and those of $\triangle A'B'C'$?

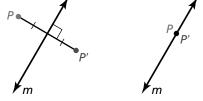
c. What do you observe about the side lengths and angle measures of the two triangles?

d. Reflect $\triangle ABC$ in the x-axis to form $\triangle A'B'C'$. Then repeat parts (b) and (c).

Communicate Your Answer

3. How can you reflect a figure in a coordinate plane?

Core Concepts


Reflections

A **reflection** is a transformation that uses a line like a mirror to reflect a figure. The mirror line is called the **line of reflection**.

A reflection in a line m maps every point P in the plane to a point P', so that for each point on of the following properties is true.

- If P is not m, then m is the perpendicular bisector of $\overline{PP'}$, or
- If P is on m, then P = P'.

Notes:

point P not on m

point P on m

Core Concepts

Coordinate Rules for Reflections

- If (a, b) is reflected in the x-axis, then its image is the point (a, -b).
- If (a, b) is reflected in the y-axis, then its image is the point (-a, b).
- If (a, b) is reflected in the line y = x, then its image is the point (b, a).
- If (a, b) is reflected in the line y = -x, then its image is the point (-b, -a).

Notes:

Reflection Postulate

A reflection is a rigid motion.

7.2 Practice (continued)

Worked-Out Examples

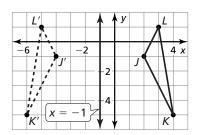
Example #1

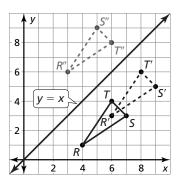
Graph \triangle JKL and its image after a reflection in the given line.

J(2, -1), K(4, -5), L(3, 1); x = -1

Reflect $\triangle JKL$ in x = -1: $J(2, -1) \rightarrow J'(-4, -1)$, $K(4, -5) \rightarrow K'(-6, -5), L(3, 1) \rightarrow L'(-5, 1)$

Example #2

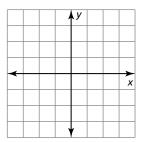

Graph \triangle RST with vertices R(4, 1), S(7, 3), and T(6, 4) and its image after the glide reflection.

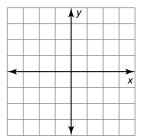

Translation: $(x, y) \rightarrow (x + 2, y - 1)$

Reflection: in the line y = x

Translation $(x, y) \rightarrow (x + 2, y + 2)$: $T(6, 4) \rightarrow T'(8, 6)$, $S(7, 3) \rightarrow S'(9, 5), R(4, 1) \rightarrow R'(6, 3)$ Reflection in the line y = x: $T'(8, 6) \rightarrow T''(6, 8)$,

 $S'(9, 5) \rightarrow S''(5, 9), R'(6, 3) \rightarrow R''(3, 6)$



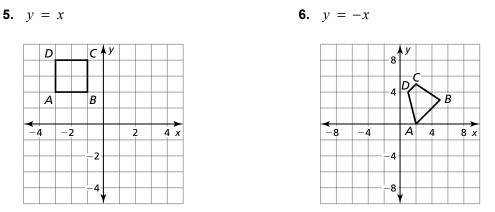

Practice A

In Exercises 1–4, graph $\triangle ABC$ and its image after a reflection in the given line.

1. A(-1, 5), B(-4, 4), C(-3, 1); y-axis

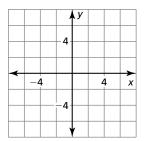
3. A(2, -1), B(-4, -2), C(-1, -3); y = 1**4.** A(-2, 3), B(-2, -2), C(0, -2); x = -3

x


2. A(0, 2), B(4, 5), C(5, 2); x-axis

		(y		
-				┝
				x
		r		

Copyright © Big Ideas Learning, LLC All rights reserved.

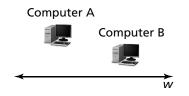

7.2 **Practice** (continued)

In Exercises 5 and 6, graph the polygon's image after a reflection in the given line.

In Exercises 7 and 8, graph $\triangle JKL$ with vertices J(3, 1), K(4, 2), and L(1, 3) and its image after the glide reflection.

Reflection: in the line y = -x

7. Translation: $(x, y) \rightarrow (x - 6, y - 1)$ 8. Translation: $(x, y) \rightarrow (x, y - 4)$

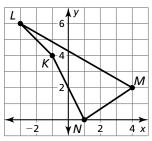

Reflection: in the line x = 1

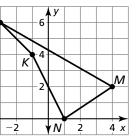
				y			
			-4-				
			-4-				
`	-4	1			4	1	x
`	-4	1	4		2	1	x
	-4	1	-4-			1	x
		1	-4-			1	x

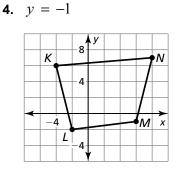
In Exercises 9–12, identify the line symmetry (if any) of the word.

- 9. MOON 10. WOW 11. KID **12.** DOCK
- 13. You are placing a power strip along wall w that connects to two computers. Where should you place the power strip to minimize the length of the connecting cables?

225

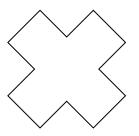

Practice B

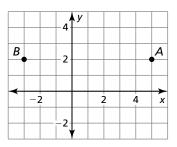

In Exercises 1 and 2, graph $\triangle CDE$ and its image after a reflection in the given line.


1. C(3, 4), D(2, -1), E(0, -5); y-axis **2.** C(1, 6), D(12, 2), E(7, -8); x = 8

In Exercises 3 and 4, graph the polygon and its image after a reflection in the given line.

3. *x*-axis





In Exercises 5 and 6, graph $\triangle ABC$ with vertices A(-1, 4), B(2, -1), and C(4, 3) and its image after the glide reflection.

- 5. Translation: $(x, y) \rightarrow (x + 2, y 1)$ **Reflection:** in the line y = x
- **7.** Determine the number of lines of symmetry for the figure.

- 6. Translation: $(x, y) \to (x 3, y + 1)$ **Reflection:** in the line y = -x
- 8. Find point P on the x-axis so that AP + BP is a minimum.

- 9. Is it possible to perform two reflections of an object so that the final image is identical to the original image? If so, give an example. If not, explain your reasoning.
- **10.** A triangle undergoes a glide reflection. Is it possible for the sides of the triangle to change length during this process? Explain your reasoning.
- **11.** Your friend claims that it is not possible to have a glide reflection if you have one translation followed by two reflections. Is your friend correct? Explain your reasoning.