5.5

Proving Geometric Relationships For use with Exploration 5.5

Essential Question How can you use a flowchart to prove a mathematical statement?

1

EXPLORATION: Matching Reasons in a Flowchart Proof

Work with a partner. Match each reason with the correct step in the flowchart.

- A. Segment Addition Postulate B. Given
- **C.** Transitive Property of Equality
- **D.** Subtraction Property of Equality

2

5.5 Proving Geometric Relationships (continued)

EXPLORATION: Matching Reasons in a Flowchart Proof

Work with a partner. Match each reason with the correct step in the flowchart.

A. Angle Addition Postulate

- **B.** Transitive Property of Equality
- **C.** Substitution Property of Equality
- E. Given

- **D.** Angle Addition Postulate
- **F.** Commutative Property of Addition

Communicate Your Answer

- 3. How can you use a flowchart to prove a mathematical statement?
- **4.** Compare the flowchart proofs above with the two-column proofs in the Section 9.4 Explorations. Explain the advantages and disadvantages of each.

Theorems and Postulates

Right Angles Congruence Theorem

All right angles are congruent.

Notes:

Congruent Supplements Theorem

If two angles are supplementary to the same angle (or to congruent angles), then they are congruent.

If $\angle 1$ and $\angle 2$ are supplementary and $\angle 3$ and $\angle 2$ are supplementary, then $\angle 1 \cong \angle 3$.

Notes:

Congruent Complements Theorem

If two angles are complementary to the same angle (or to congruent angles), then they are congruent.

If $\angle 4$ and $\angle 5$ are complementary and $\angle 6$ and $\angle 5$ are complementary, then $\angle 4 \cong \angle 6$.

Notes:

Linear Pair Postulate

If two angles form a linear pair, then they are supplementary.

 $\angle 1$ and $\angle 2$ form a linear pair, so $\angle 1$ and $\angle 2$ are supplementary and $m\angle 1 + m\angle 2 = 180^{\circ}$.

Notes:

Vertical Angles Congruence Theorem

Vertical angles are congruent.

Notes:

 $\angle 1 \cong \angle 3, \angle 2 \cong \angle 4$

Date

5.5 Practice (continued)

Worked-Out Examples

Example #1

Copy and complete the two-column proof. Then write a flowchart proof.

Given $\angle ABD$ is a right a	ngle.	STATEMENTS	REASONS
Prove $\angle ABC \cong \angle DBE$	ngie.	1. $\angle ABD$ is a right angle. $\angle CBE$ is a right angle.	1
		2. $\angle ABC$ and $\angle CBD$ are complementary.	2. Definition of complementary angles
	KE E	3. $\angle DBE$ and $\angle CBD$ are complementary.	3
		4. $\angle ABC \cong \angle DBE$	4
STATEMENTS	REASONS	Flowchart proof:	
1. $\angle ABD$ is a right angle. $\angle CBE$ is a right angle.	1. Given	$\angle ABD$ is a right ang	$\angle ABC \text{ and } \angle CBD$ are complementary.
2. $\angle ABC$ and $\angle CBD$ are complementary.	2. Definition of complementary angles	Given	Definition of complementary angles
3. $\angle DBE$ and $\angle CBD$ are complementary.	3. Definition of complementary angles	$\angle CBE$ is a right ang	$\angle DBE \text{ and } \angle CBD$ are complementary.
4. $\angle ABC \cong \angle DBE$	4. Congruent Complements Theorem	Given	

Congruent Complements Theorem

Example #2

Write a proof using any format.

Given $\angle QRS$ and $\angle PSR$ are supplementary angles. **Prove** $\angle QRL \cong \angle PSR$

Because $\angle QRS$ and $\angle PSR$ are supplementary, $m \angle QRS + m \angle PSR = 180^{\circ}$ by the definition of supplementary angles. $\angle QRL$ and $\angle QRS$ form a linear pair and by definition are supplementary, which means that $m \angle QRL + m \angle QRS = 180^{\circ}$. So, by the Transitive Property of Equality, $m \angle QRS + m \angle PSR = m \angle QRL + m \angle QRS$, and by the Subtraction Property of Equality, $m \angle PSR = m \angle QRL$. So, by definition of congruent angles, $\angle PSR \cong \angle QRL$, and by the Symmetric Property of Angle Congruence, $\angle QRL \cong \angle PSR$.

Date_____

5.5 **Practice** (continued)

Practice A

- **1.** Complete the flowchart proof. Then write a two-column proof.
 - **Given** $\angle ACB$ and $\angle ACD$ are supplementary. $\angle EGF$ and $\angle ACD$ are supplementary.

Prove $\angle ACB \cong \angle EGF$

Two-Column Proof

REASONS	

Practice B

In Exercises 1 and 2, identify the pair(s) of congruent angles in the figures. Explain how you know they are congruent.

In Exercises 3 and 4, find the values of *x* and *y*.

