Name

3.6 Graphing Rational Functions For use with Exploration 3.6

Essential Question What are some of the characteristics of the graph of a rational function?

The parent function for rational functions with a linear numerator and a linear denominator is

$$f(x) = \frac{1}{x}$$
. Parent function

The graph of this function, shown at the right, is a *hyperbola*.

EXPLORATION: Identifying Graphs of Rational Functions

Work with a partner. Each function is a transformation of the graph of the parent function $f(x) = \frac{1}{x}$. Match the function with its graph. Explain your reasoning. Then describe the transformation.

a.
$$g(x) = \frac{1}{x-1}$$
 b. $g(x) = \frac{-1}{x-1}$ **c.** $g(x) = \frac{x+1}{x-1}$

d.
$$g(x) = \frac{x-2}{x+1}$$
 e. $g(x) = \frac{x}{x+2}$ **f.** $g(x) = \frac{-x}{x+2}$

3.6 Graphing Rational Functions (continued)

Communicate Your Answer

- 2. What are some of the characteristics of the graph of a rational function?
- 3. Determine the intercepts, asymptotes, domain, and range of the rational function

$$g(x)=\frac{x-a}{x-b}.$$

Core Concepts

Parent Function for Simple Rational Functions

The graph of the parent function $f(x) = \frac{1}{x}$ is a *hyperbola*, which consists of two symmetrical parts called branches. The domain and range are all nonzero real numbers.

Any function of the form $g(x) = \frac{a}{x}(a \neq 0)$ has the same

asymptotes, domain, and range as the function $f(x) = \frac{1}{x}$.

Notes:

Graphing Translations of Simple Rational Functions

To graph a rational function of the form $y = \frac{a}{x - h} + k$, follow these steps:

- **Step 1** Draw the asymptotes x = h and y = k.
- **Step 2** Plot points to the left and to the right of the vertical asymptote.
- **Step 3** Draw the two branches of the hyperbola so that they pass through the plotted points and approach the asymptotes.

Notes:

Worked-Out Examples

Example #1

Graph the function. State the domain and range.

$$y = \frac{1}{x+2}$$

Step 1 Draw the asymptotes x = -2 and y = 0.

Step 2 Plot points to the left of the vertical asymptote, such as $\left(-5, -\frac{1}{3}\right)$, $\left(-4, -\frac{1}{2}\right)$, and $\left(-3, -1\right)$. Plot points to the right of the vertical asymptote, such as $\left(-1, 1\right)$, $\left(0, \frac{1}{2}\right)$, and $\left(1, \frac{1}{3}\right)$.

3.6 **Practice** (continued)

Step 3 Draw the two branches of the hyperbola so that they pass through the plotted points and approach the asymptotes.

The domain is all real numbers except -2 and the range is all real numbers except 0.

Example #2

Graph the function. State the domain and range.

- $y = \frac{x-1}{x+5}$
- **Step 1** Draw the asymptotes. Solve x + 5 = 0 for x to find the vertical asymptote x = -5. The horizontal asymptote is the line $y = \frac{a}{c} = \frac{1}{1} = 1$.
- Step 2 Plot points to the left of the vertical asymptote, such as (-8, 3), (-7, 4), and (-6, 7). Plot points to the right of the vertical asymptote, such as (-4, -5), (-3, -2), and (-2, -1).
- Step 3 Draw the two branches of the hyperbola so that they pass through the plotted points and approach the asymptotes.

The domain is all real numbers except -5 and the range is all real numbers except 1.

Practice A

In Exercises 1 and 2, graph the function. Compare the graph with the graph of $f(x) = \frac{1}{x}$.

1.
$$g(x) = \frac{0.25}{x}$$

Copyright © Big Ideas Learning, LLC All rights reserved.

3.6 Practice (continued)

In Exercises 3 and 4, graph the function. State the domain and range.

In Exercises 5 and 6, rewrite the function in the form $g(x) = \frac{a}{x - h} + k$. Graph the function. Describe the graph of g as a transformation of the graph of $f(x) = \frac{a}{x}$.

5. $g(x) = \frac{x+2}{x-5}$

6.
$$g(x) = \frac{2x+8}{3x-12}$$

Practice B

In Exercises 1–3, graph the function. Compare the graph with the graph of 1

 $f(x)=\frac{1}{x}.$

1. $h(x) = \frac{12}{x}$ **2.** $g(x) = \frac{-8}{x}$ **3.** $h(x) = \frac{0.2}{x}$

In Exercises 4–15, graph the function. State the domain and range.

- 4. $f(x) = \frac{5}{x} 2$ 5. $g(x) = \frac{3}{x+4}$ 6. $y = \frac{-8}{x-3}$ 7. $h(x) = \frac{-1}{x+5}$ 8. $y = \frac{-2}{x+1} + 3$ 9. $y = \frac{9}{x-4} - 2$ 10. $f(x) = \frac{x+5}{x-4}$ 11. $g(x) = \frac{x-3}{2x+8}$ 12. $h(x) = \frac{-8x+3}{5x+2}$
- **13.** $y = \frac{3x-1}{5x-1}$ **14.** $y = \frac{-3x}{-4x-1}$ **15.** $y = \frac{-2x+5}{-x+8}$

In Exercises 16–21, rewrite the function in the form $g(x) = \frac{a}{x-h} + k$. Graph the function. Describe the graph of g as a transformation of the graph of $f(x) = \frac{a}{x}$.

- **16.** $g(x) = \frac{3x+7}{x+2}$ **17.** $g(x) = \frac{4x-2}{x-3}$ **18.** $g(x) = \frac{4x-10}{x+5}$
- **19.** $g(x) = \frac{x+12}{x-3}$ **20.** $g(x) = \frac{5x-30}{x+4}$ **21.** $g(x) = \frac{7x-2}{x+6}$
- **22.** You are creating statues made of cement. The mold costs \$300. The material for each statue costs \$22.
 - **a.** Estimate how many statues must be made for the average cost per statue to fall below \$30.
 - **b.** What happens to the average cost as more statues are created?
- **23.** The concentration c of a certain drug in a patient's bloodstream t hours after an injection is given by $c(t) = \frac{t}{4t^2 + 1}$.
 - **a.** Use a graphing calculator to graph the function. Describe a reasonable domain and range.
 - **b.** Determine the time at which the concentration is the highest.