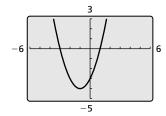
Quadratic Inequalities For use with Exploration 2.8

Essential Question How can you solve a quadratic inequality?


EXPLORATION: Solving a Quadratic Inequality

Work with a partner. The graphing calculator screen shows the graph of

$$f(x) = x^2 + 2x - 3.$$

Explain how you can use the graph to solve the inequality

$$x^2 + 2x - 3 \le 0.$$

Then solve the inequality.

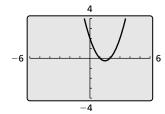
EXPLORATION: Solving Quadratic Inequalities

Work with a partner. Match each inequality with the graph of its related quadratic function on the next page. Then use the graph to solve the inequality.

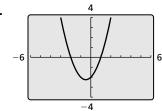
a.
$$x^2 - 3x + 2 > 0$$

a.
$$x^2 - 3x + 2 > 0$$
 b. $x^2 - 4x + 3 \le 0$ **c.** $x^2 - 2x - 3 < 0$

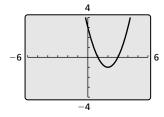
c.
$$x^2 - 2x - 3 < 0$$

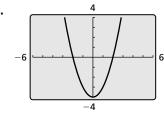

d.
$$x^2 + x - 2 \ge 0$$

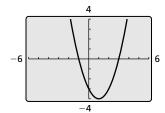
d.
$$x^2 + x - 2 \ge 0$$
 e. $x^2 - x - 2 < 0$ **f.** $x^2 - 4 > 0$

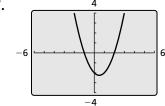

f.
$$x^2 - 4 > 0$$

Quadratic Inequalities (continued)


A.


В.


C.


D.

E.

F.

Communicate Your Answer

- **3.** How can you solve a quadratic inequality?
- **4.** Explain how you can use the graph in Exploration 1 to solve each inequality. Then solve each inequality.
 - **a.** $x^2 + 2x 3 > 0$ **b.** $x^2 + 2x 3 < 0$ **c.** $x^2 + 2x 3 \ge 0$

Practice For use after Lesson 2.8

Core Concepts

Graphing a Quadratic Inequality in Two Variables

To graph a quadratic inequality in one of the following forms,

$$y < ax^2 + bx + c \qquad \qquad y > ax^2 + bx + c$$

$$y \le ax^2 + bx + c \qquad \qquad y \ge ax^2 + bx + c,$$

follow these steps.

- **Step 1** Graph the parabola with the equation $y = ax^2 + bx + c$. Make the parabola dashed for inequalities with < or > and solid for inequalities with \le or \ge .
- **Step 2** Test a point (x, y) inside the parabola to determine whether the point is a solution of the inequality.
- **Step 3** Shade the region inside the parabola if the point from Step 2 is a solution. Shade the region outside the parabola if it is not a solution.

Notes:

Worked-Out Examples

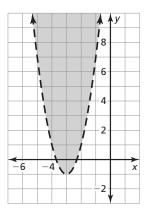
Example #1

Graph the inequality.

$$y > 2(x+3)^2 - 1$$

Step 1 Graph $y = 2(x + 3)^2 - 1$. Because the inequality symbol is >, make the parabola dashed.

Step 2 Test a point inside the parabola, such as (-3, 1).


$$y > 2(x+3)^2 - 1$$

$$1 \stackrel{?}{>} 2(-3+3)^2 - 1$$

$$1 > -1$$

So, (-3, 1) is a solution of the inequality.

Step 3 Shade the region inside the parabola.

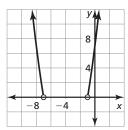
2.8 Practice (continued)

Example #2

Solve the inequality by graphing.

$$x^2 + 8x > -7$$

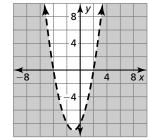
The solution consists of the *x*-values for which the graph of $y = x^2 + 8x + 7$ lies above the *x*-axis. Find the *x*-intercepts of the graph by letting y = 0 and use factoring to solve $0 = x^2 + 8x + 7$ for *x*.

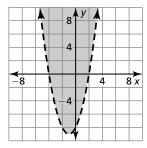

$$x^2 + 8x + 7 = 0$$

$$(x+7)(x+1) = 0$$

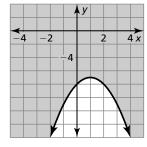
$$x + 7 = 0$$
 or $x + 1 = 0$

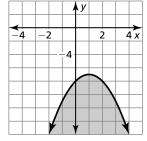
$$x = -7$$
 or $x = -1$


The solutions are x = -7 and x = -1. Sketch a parabola that opens up and has -7 and -1 as x-intercepts. The graph lies above the x-axis to the left of x = -7 and to the right of x = -1. The solution of the inequality is x < -7 or x > -1.


Practice A

In Exercises 1-4, match the graph with its inequality. Explain your reasoning.


1.


2.

3.

4.

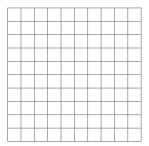
A. $y < x^2 + 2x - 8$

C.
$$y > x^2 + 2x - 8$$

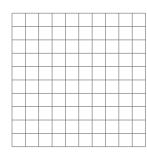
B. $v \le -x^2 + 2x - 8$

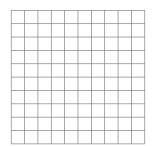
D.
$$y \ge -x^2 + 2x - 8$$

Practice (continued)

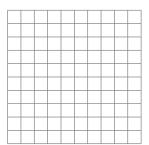

In Exercises 5-8, graph the inequality.

5.
$$y < x^2 + 2$$


6.
$$y \le -5x^2$$

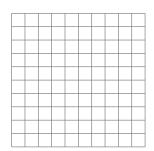

7.
$$y \ge -(x+4)^2 - 1$$
 8. $y < 4x^2 + 4x + 1$

8.
$$y < 4x^2 + 4x + 1$$

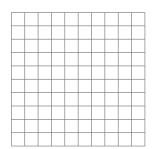


9. Accident investigators use the formula $d = 0.01875v^2$, where d is the braking distance of a car (in feet) and v is the speed of the car (in miles per hour) to determine how fast a car is going at the time of an accident. For what speeds v would a car leave a tire mark on the road of over 1 foot?

In Exercises 10–12, graph the system of quadratic inequalities.


10.
$$y \le -x^2$$

$$y > -3x^2 + 3$$


11.
$$y \ge x^2 + 5x$$

$$y \ge (x+2)^2 - 1$$

12.
$$y > x^2 - 7x - 8$$

$$y < -x^2 + 6x + 5$$

In Exercises 13–15, solve the inequality algebraically.

13.
$$16x^2 > 100$$

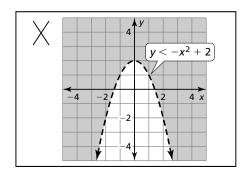
14.
$$x^2 \le 15x - 34$$

14.
$$x^2 \le 15x - 34$$
 15. $-\frac{1}{5}x^2 + 10x \ge -25$

16. The profit for a hot dog company is given by the equation $y = -0.02x^2 + 140x - 2500$, where x is the number of hot dogs produced and y is the profit (in dollars). How many hot dogs must be produced so that the company will generate a profit of at least \$150,000?

Practice B

In Exercises 1-4, graph the inequality.


1.
$$y \le x^2 + 3$$

2.
$$y > x^2 + 2x - 3$$

3.
$$y < -(x+1)^2 + 2$$

4.
$$y \ge -x^2 + 4x$$

5. Describe and correct the error in graphing $y < -x^2 + 2$.

In Exercises 6 and 7, graph the system of quadratic inequalities.

6.
$$y \le -x^2 + 3$$

$$y \ge 2x^2 - 3x + 1$$

7.
$$y > x^2 - x + 4$$

$$y < x^2 + 2x - 4$$

In Exercises 8-11, solve the inequality algebraically.

8.
$$2x^2 - 6 > -11x$$

9.
$$2x^2 - 5x + 3 \le 1$$

10.
$$\frac{1}{2}x^2 + 3x \ge 2$$

11.
$$\frac{1}{3}x^2 - 2x < 9$$

In Exercises 12–15, solve the inequality by graphing.

12.
$$2x^2 - 6 > -3x$$

13.
$$4x^2 + 3x - 5 \le 1$$

14.
$$\frac{1}{2}x^2 + x \le 2$$

15.
$$\frac{2}{3}x^2 + 2x > 4$$

- **16.** An object is dropped from a building. The height h (in feet) of the object after t seconds can be modeled by $h(t) = -16t^2 28t + 25$.
 - **a.** At what height was the object initially dropped? Explain.
 - **b.** Write an inequality that you can use to find the *t*-values for which the object was in the air.
 - **c.** Based on your results from parts (a) and (b), use a graphing calculator to determine the time intervals in which the object was in the air.