2.5 Complex Numbers For use with Exploration 2.5

Essential Question What are the subsets of the set of complex numbers?

EXPLORATION: Classifying Numbers

Work with a partner. Determine which subsets of the set of complex numbers contain each number.

a. $\sqrt{9}$ **b.** $\sqrt{0}$ **c.** $-\sqrt{4}$

d. $\sqrt{\frac{4}{9}}$

e. $\sqrt{2}$

f. $\sqrt{-1}$

2.5 Complex Numbers (continued)

2

EXPLORATION: Simplifying i^2

Work with a partner. Justify each step in the simplification of i^2 .

Algebraic Step Justification

 $i^2 = \left(\sqrt{-1}\right)^2$ = -1

Communicate Your Answer

3. What are the subsets of the set of complex numbers? Give an example of a number in each subset.

4. Is it possible for a number to be both whole and natural? natural and rational? rational and irrational? real and imaginary? Explain your reasoning.

5. Your friend claims that the conclusion in Exploration 2 is incorrect because $i^2 = i \bullet i = \sqrt{-1} \bullet \sqrt{-1} = \sqrt{-1(-1)} = \sqrt{1} = 1$. Is your friend correct? Explain.

2.5 Practice For use after Lesson 2.5

Core Concepts

The Square Root of a Negative Number

Property

Example

- **1.** If *r* is a positive real number, then $\sqrt{-r} = i\sqrt{r}$. $\sqrt{-3} = i\sqrt{3}$
- **2.** By the first property, it follows that $(i\sqrt{r})^2 = -r$. $(i\sqrt{3})^2 = i^2 \cdot 3 = -3$

Notes:

Sums and Differences of Complex Numbers

To add (or subtract) two complex numbers, add (or subtract) their real parts and their imaginary parts separately.

Sum of complex numbers:	(a + bi) + (c + di) = (a + c) + (b + d)i
Difference of complex numbers:	(a + bi) - (c + di) = (a - c) + (b - d)i

Notes:

2.5 Practice (continued)

Worked-Out Examples

Example #1

Find the values of x and y that satisfy the equation.

-10x + 12i = 20 + 3yi

Set the real parts equal to each other and the imaginary parts equal to each other.

-10x = 20 12 = 3yx = -2 y = 4So, x = -2 and y = 4.

Example #2

Add or subtract. Write the answer in standard form.

$$16 - (2 - 3i) - i = (16 - 2) + (3 - 1)i$$
$$= 14 + 2i$$

Practice A

In Exercises 1–6, find the square root of the number.

 1. $\sqrt{-49}$ 2. $\sqrt{-4}$ 3. $\sqrt{-45}$

 4. $-2\sqrt{-100}$ 5. $6\sqrt{-121}$ 6. $5\sqrt{-75}$

In Exercises 7 and 8, find the values of x and y that satisfy the equation.

7.
$$-10x + i = 30 - yi$$

8. $44 - \frac{1}{2}yi = -\frac{1}{4}x - 7i$

2.5 Practice (continued)

In Exercises 9–14, simplify the expression. Then classify the result as a *real number* or *imaginary number*. If the result is an *imaginary number*, specify if it is a *pure imaginary number*.

9.
$$(-8+3i) + (-1-2i)$$

10. $(36-3i) - (12+24i)$

11.
$$(16 + i) + (-16 - 8i)$$
 12. $(-5 - 5i) - (-6 - 6i)$

13.
$$(-1+9i)(15-i)$$
 14. $(6-7i)(-5+8i)$

15. Find the impedance of the series circuit.

In Exercises 16–18, multiply the complex number by this complex conjugate.

16. 8 + i **17.** 3 - 2i **18.** -7 - 5i

Practice B

In Exercises 1–3, find the square root of the number.

1. $3\sqrt{-25}$ **2.** $2\sqrt{-40}$ **3.** $4\sqrt{-54}$

In Exercises 4–7, find the values of x and y that satisfy the equation.

4. 2x - 3yi = 14 + 12i **5.** $\frac{1}{3}x - 6i = 8 - 3yi$ **6.** $22 + \frac{1}{5}yi = 2x - 2$ **7.** -1 + 10i = -x + 3yi

In Exercises 8–11, add or subtract. Write the answer in standard form.

8. (9 + 6i) - (15 - 7i)**9.** 13 - (5 + i) + 7i**10.** 14 - (17 - 7i) + 8i**11.** -4 + (9 - 2i) + 3i

12. The additive inverse of a complex number z is a complex number z_a such that $z + z_a = 0$. Find the additive inverse of each complex number.

a.
$$z = 2 + 3i$$
 b. $z = 4 - 4i$ **c.** $z = -5 + 2i$

In Exercises 13–16, multiply. Write the answer in standard form.

- **13.** (4 + 7i)(5 + 2i) **14.** (5 3i)(5 + 3i)
- **15.** (10 7i)(10 + 7i) **16.** $(6 4i)^2$
- **17.** Justify each step in performing the operation.
 - (6-2i)(8-3i)

$48 - 18i - 16i + 6i^2$	
$48 - 34i + 6i^2$	
48 - 34i + 6(-1)	
42 - 34i	

In Exercises 18–20, multiply the complex number by its complex conjugate.

18. 4 + 5i **19.** 6 - 4i

20. -2 - 5i

21. Write the complex conjugate of $1 + \sqrt{-18}$. Then find the product of the complex conjugates.