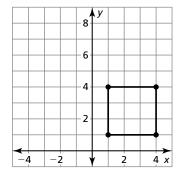
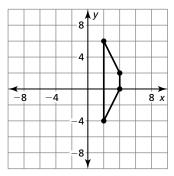

CHAPTER 1

Linear Functions


1.1 Parent Functions and Transformations	3
1.2 Modeling with Linear Functions	9
1.3 Solving Linear Systems	17


Chapter Maintaining Mathematical Proficiency Evaluate. 1. $7 \cdot 3^2 + 11$ 2. $10 - 3(3 + 1)^3$ 3. $64 \div 4^2 + \frac{1}{2}$ 4. $-99 \div 3^2 \cdot 5$ 5. $\frac{1}{7}(7^2 + 28)$ 6. $-\frac{1}{8}(8 + 24) - 2^2$

Graph the transformation of the figure.

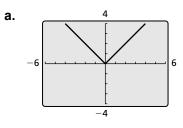
- **7.** Translate the rectangle 3 units left and 4 units up.
- **8.** Reflect the right triangle in the *y*-axis. Then translate 3 units down.

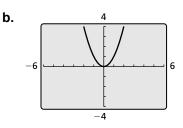
- 2
- **9.** Translate the trapezoid 2 units up. Then reflect in the *x*-axis.

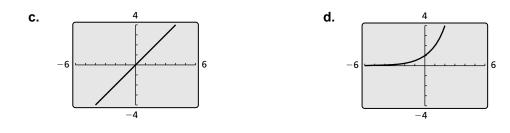
10. The point (1, 1) is on f(x). After a series of 3 transformations, (1, 1) has been moved to (2, -7). Write a function g(x) that represents the transformations on f(x).

1

1.1

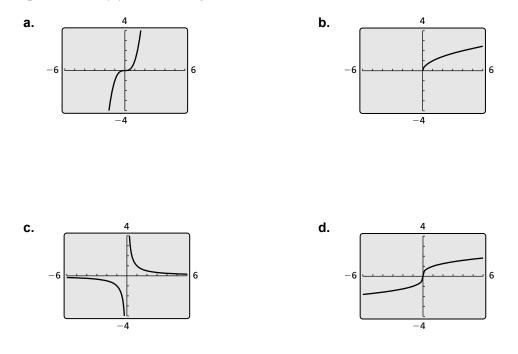

Parent Functions and Transformations For use with Exploration 1.1


Essential Question What are the characteristics of some of the basic parent functions?



EXPLORATION: Identifying Basic Parent Functions

Work with a partner. Graphs of four basic parent functions are shown below. Classify each function as *linear*, *absolute value*, *quadratic*, or *exponential*. Justify your reasoning.

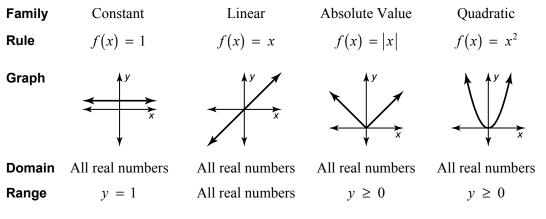


1.1 Parent Functions and Transformations (continued)

2 **EXPLORATION:** Identifying Basic Parent Functions

Work with a partner. Graphs of four basic parent functions that you will study later in this course are shown below. Classify each function as *square root, cube root, cubic*, or *reciprocal*. Justify your reasoning.

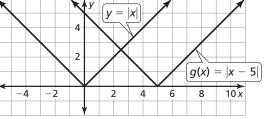
Communicate Your Answer


3. What are the characteristics of some of the basic parent functions?

4. Write an equation for each function whose graph is shown in Exploration 1. Then use a graphing calculator to verify that your equations are correct.

Core Concepts

Parent Functions

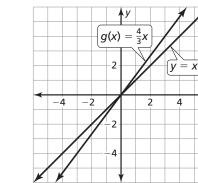

Notes:

Worked-Out Examples

Example #1

Graph the function and its parent function. Then describe the transformation.

g(x) = |x - 5|

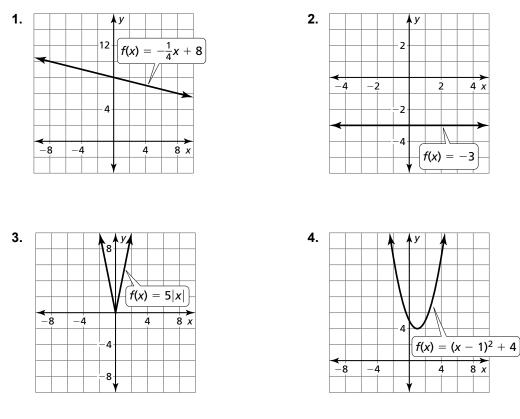


So, the graph of g(x) = |x - 5| is a horizontal translation 5 units right of the parent absolute value function.

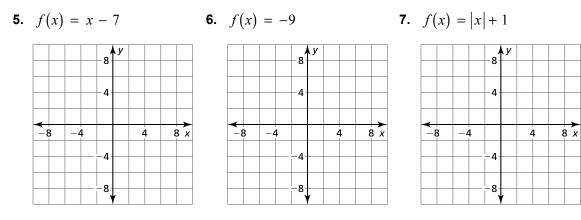
Example #2

 $g(x) = \frac{4}{3}x$

Graph the function and its parent function. Then describe the transformation.



So, the graph of $g(x) = \frac{4}{3}x$ is a vertical stretch of the parent linear function.


1.1 Practice (continued)

Practice A

In Exercises 1–4, identify the function family to which f belongs. Compare the graph of f to the graph of its parent function.

In Exercises 5–10, graph the function and its parent function. Then describe the transformation.

Date _____

4

8

4

8 x

4

8

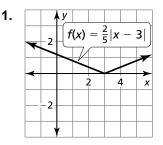
Practice (continued) 1.1 **9.** $f(x) = \frac{1}{8}x^2$ 8. $h(x) = -x^2$ **10.** g(x) = 6|x|-8 8 4 4 **←**+ -8 8 x < | -4 4 -8 -4 4 8 x -4

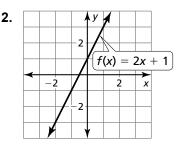
11. Identify the function family of $f(x) = \frac{1}{3}|-x| + 4$ and describe the domain and range. Use a graphing calculator to verify your answer.

4

8

12. The table shows the distance a biker rides in his first team relay competition.


Time (hours), <i>x</i>	1	2	3	4
Distance (miles), y	12	24	36	48


a. What type of function can you use to model the data? Explain.

b. If the biker's teammate rides at the same pace but leaves 1 hour later, what type of transformation does this represent?

Practice B

In Exercises 1 and 2, identify the function family to which f belongs. Compare the graph of f with the graph of its parent function.

In Exercises 3–8, graph the function and its parent function. Then describe the transformation.

- **3.** h(x) = x + 2 **4.** f(x) = -x **5.** $g(x) = -x^2$
- **6.** $f(x) = (x + 2)^2$ **7.** h(x) = |x| 2 **8.** f(x) = -3

In Exercises 9–11, graph the function and its parent function. Then describe the transformation.

9. $f(x) = \frac{3}{5}x$ **10.** $h(x) = \frac{3}{2}|x|$ **11.** $h(x) = \frac{4}{3}x^2$

In Exercises 12–14, use a graphing calculator to graph the function and its parent function. Then describe the transformations.

12. $g(x) = \frac{1}{10}x^2 + 5$ **13.** $h(x) = (x - 5)^2 + \frac{4}{9}$ **14.** $f(x) = -|x + 2| - \frac{1}{3}$

In Exercises 15–18, identify the function family and describe the domain and range. Use a graphing calculator to verify your answer.

- **15.** h(x) = |x + 5| + 3 **16.** g(x) = -2x 10 **17.** $g(x) = 7x^2 3$
- **18.** You are throwing a football with your friends. The height (in feet) of the ball above the ground t seconds after it is released from your hand is modeled by the function $f(t) = -16t^2 + 45t + 6$.
 - **a.** Without graphing, identify the type of function modeled by the equation.
 - **b.** What is the value of *t* when the ball is released from your hand? Explain.
 - **c.** How many feet above the ground is the ball when it is released from your hand? Explain.