10.5 Choosing a Data Display For use with Exploration 10.5

Essential Question How can you display data in a way that helps you make decisions?

EXPLORATION: Displaying Data

Work with a partner. Analyze the data and then create a display that best represents the data. Explain your choice of data display.

a. A group of schools in New England participated in a 2-month study and reported 3962 animals found dead along roads.

birds: 307 mammals: 2746 amphibians: 145 reptiles: 75 unknown: 689

b. The data below show the numbers of black bears killed on a state's roads from 1993 to 2012.

1993: 30	2003: 74
1994: 37	2004: 88
1995: 46	2005: 82
1996: 33	2006: 109
1997: 43	2007: 99
1998: 35	2008: 129
1999: 43	2009: 111
2000: 47	2010: 127
2001: 49	2011: 141
2002: 61	2012: 135

c. A 1-week study along a 4-mile section of road found the following weights (in pounds) of raccoons that had been killed by vehicles.

13.4	14.8	17.0	12.9	21.3	21.5	16.8	14.8
15.2	18.7	18.6	17.2	18.5	9.4	19.4	15.7
14.5	9.5	25.4	21.5	17.3	19.1	11.0	12.4
20.4	13.6	17.5	18.5	21.5	14.0	13.9	19.0

1

10.5 Choosing a Data Display (continued)

EXPLORATION: Displaying Data (continued)

d. A yearlong study by volunteers in California reported the following numbers of animals killed by motor vehicles.

raccoons: 1693	gray squirrels: 715
skunks: 1372	cottontail rabbits: 629
ground squirrels: 845	barn owls: 486
opossum: 763	jackrabbits: 466
deer: 761	gopher snakes: 363

Communicate Your Answer

- 2. How can you display data in a way that helps you make decisions?
- **3.** Use the Internet or some other reference to find examples of the following types of data displays.

bar graph	circle graph	scatter plot		
stem-and-leaf plot	pictograph	line graph		
box-and-whisker plot	histogram	dot plot		

10.5 Practice For use after Lesson 10.5

Core Concepts

Types of Data

Qualitative data, or **categorical data,** consist of labels or nonnumerical entries that can be separated into different categories. When using qualitative data, operations such as adding or finding a mean do not make sense.

Quantitative data consist of numbers that represent counts or measurements.

Notes:

	Ages of World Cup Winners				
Worked-Out Examples	2010 Men's World Cup Winner (Spain)2011 Women's World Cup Winner (Japan)				
Analyze the data and then create a display that best represents the data. Explain your reasoning.	29 24 23 30 32 26 28 30 26 23 32 28 22 28 24 21 27 22 25 21 24 24 27	36 27 24 20 27 23 29 26 25 32 27 27 22 25 24 23 24 28 20 18 24 24			
Sample answer: lower half		·			
21, 21, 22, 22, 23, 23, 24, 24, 24, 24, least value upper half	25, Least valu First quar Median: 2 Third qua	ue: 21 tile: 23 26 rtile: 28			
26, 26, 27, 27, 28, 28, 28, 29, 30, 30, 32, ▲ median lower half 100000000000000000000000000000000000	32 Greatest v	ralue: 32			
18, 20, 20, 22, 23, 23, 24, 24, 24, least value (quartile)	24, Least valu First quar	te: 18 tile: $\frac{23+23}{2} = \frac{46}{2} = 23$			

upper half 25, 27, 28, 29, 32, 25, 26, 27, 27, 27, 36 ▲ ▲ (median) third greatest quartile value

First quartile:
$$\frac{2}{2} = \frac{1}{2} = 23$$

Median: 25
Third quartile: $\frac{27 + 27}{2} = \frac{54}{2} = 27$
Greatest value: 36

10.5 Practice (continued)

A double box-and-whisker plot shows the distributions of the data.

Example #2

Display the data in Example 1 in another way.

Sample answer:

Age	Frequency for 2010 Men's World Cup Winner (Spain)	Frequency for 2011 Women's World Cup Winner (Japan)
18–21	2	3
22–25	9	9
26–29	8	7
30-33	4	1
34–37	0	1

Practice A

In Exercises 1–4, tell whether the data are *qualitative* or *quantitative*. Explain your reasoning.

- 1. bookmarks in your web browser
- 2. heights of players on a basketball team
- 3. the number of kilobytes in a downloaded file
- **4.** FM radio station numbers

Date

Name

5.

10.5 Practice (continued)

In Exercises 5 and 6, analyze the data and then create a display that best represents the data. Explain your reasoning.

	Home Runs Each Year										
Babe Ruth						н	ank	Aaro	n		
0	4	3	2	11	29	13	27	26	44	30	39
54	59	35	41	46	25	40	34	45	44	24	32
47	60	54	46	49	46	44	39	29	44	38	47
41	34	22	6			34	40	20	12	10	

6.

Total Points Scored by a Basketball Team for Each Game								
48	56	49	52	40	65			
30	47	62	40	59	37			
45	41	44	33	44	30			

In Exercises 7 and 8, describe how the graph is misleading. Then explain how someone might misinterpret the graph.

Practice B

In Exercises 1–4, tell whether the data are *qualitative* or *quantitative*. Explain your reasoning.

- 1. numbers of cans of vegetables at a food pantry
- 2. names of players on your school soccer team
- 3. balances in the savings accounts at a bank
- 4. numbers on the backs of the jerseys of your school football team

In Exercises 5 and 6, choose an appropriate data display for the situation. Explain your reasoning.

- 5. bowling scores for all of the students on the team
- 6. the price of a gallon of gas on January 1st over a 10-year period

In Exercises 7 and 8, describe how the graph is misleading. Then explain how someone might misinterpret the graph.

