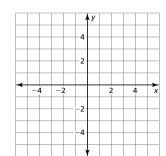
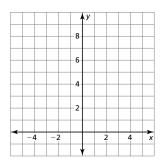
9.3

Solving Quadratic Equations Using Square RootsFor use with Exploration 9.3

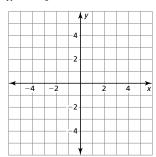
Essential Question How can you determine the number of solutions of a quadratic equation of the form $ax^2 + c = 0$?

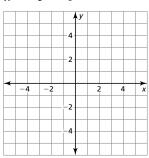

1

EXPLORATION: The Number of Solutions of $ax^2 + c = 0$


Go to BigIdeasMath.com for an interactive tool to investigate this exploration.

Work with a partner. Solve each equation by graphing. Explain how the number of solutions of $ax^2 + c = 0$ relates to the graph of $y = ax^2 + c$.


a.
$$x^2 - 4 = 0$$


b.
$$2x^2 + 5 = 0$$

c.
$$x^2 = 0$$

d.
$$x^2 - 5 = 0$$

2

EXPLORATION: Estimating Solutions

Work with a partner. Complete each table. Use the completed tables to estimate the solutions of $x^2 - 5 = 0$. Explain your reasoning.

a.	X	$x^2 - 5$
	2.21	
	2.22	
	2.23	
	2.24	
	2.25	
	2.26	

Solving Quadratic Equations Using Square Roots (continued)

3 EXI

EXPLORATION: Using Technology to Estimate Solutions

Work with a partner. Two equations are equivalent when they have the same solutions.

- **a.** Are the equations $x^2 5 = 0$ and $x^2 = 5$ equivalent? Explain your reasoning.
- **b.** Use the square root key on a calculator to estimate the solutions of $x^2 5 = 0$. Describe the accuracy of your estimates in Exploration 2.
- **c.** Write the exact solutions of $x^2 5 = 0$.

Communicate Your Answer

- **4.** How can you determine the number of solutions of a quadratic equation of the form $ax^2 + c = 0$?
- **5.** Write the exact solutions of each equation. Then use a calculator to estimate the solutions.

a.
$$x^2 - 2 = 0$$

b.
$$3x^2 - 18 = 0$$

c.
$$x^2 = 8$$

Core Concepts

Solutions of $x^2 = d$

- When d > 0, $x^2 = d$ has two real solutions, $x = \pm \sqrt{d}$.
- When $d = 0, x^2 = d$ has one real solution, x = 0.
- When $d < 0, x^2 = d$ has no real solutions.

Notes:

Worked-Out Examples

Example #1

Determine the number of real solutions of the equation. Then solve the equation using square roots.

$$x^2 = -36$$

Because d = -36 < 0, $x^2 = -36$ has no real solutions.

Example #2

Solve the equation using square roots.

$$4x^{2} + 10 = 11$$

$$\frac{-10}{4x^{2}} = \frac{10}{1}$$

$$\frac{4x^{2}}{4} = \frac{1}{4}$$

$$x^{2} = \frac{1}{4}$$

$$\sqrt{x^{2}} = \sqrt{\frac{1}{4}}$$

$$x = \pm \frac{1}{2}$$

The solutions are
$$x = \frac{1}{2}$$

and
$$x = -\frac{1}{2}$$
.

Practice (continued)

Practice A

In Exercises 1–18, solve the equation using square roots.

1.
$$x^2 + 49 = 0$$
 2. $x^2 - 25 = 0$ **3.** $x^2 + 6 = 6$

2.
$$x^2 - 25 = 0$$

$$3. x^2 + 6 = 6$$

4.
$$2x^2 + 84 = 0$$

5.
$$2x^2 - 72 = 0$$

4.
$$2x^2 + 84 = 0$$
 5. $2x^2 - 72 = 0$ **6.** $-x^2 - 12 = -12$

7.
$$8x^2 - 49 = 151$$

7.
$$8x^2 - 49 = 151$$
 8. $-3x^2 + 16 = -11$ **9.** $81x^2 - 49 = -24$

$$9. 81x^2 - 49 = -24$$

10.
$$16x^2 - 1 = 0$$

11.
$$25x^2 + 9 = 0$$

10.
$$16x^2 - 1 = 0$$
 11. $25x^2 + 9 = 0$ **12.** $16 - 2x^2 = 16$

13.
$$(x-4)^2=0$$

14.
$$(x+2)^2 = 196$$

13.
$$(x-4)^2 = 0$$
 14. $(x+2)^2 = 196$ **15.** $(2x+7)^2 = 49$

9.3 Practice (continued)

- **16.** $16(x-3)^2 = 25$ **17.** $81(3x+1)^2 = 49$ **18.** $(4x-3)^2 = 64$

In Exercises 19-24, solve the equation using square roots. Round your solutions to the nearest hundredth.

19.
$$x^2 + 6 = 8$$

20.
$$x^2 - 12 = 3$$

20.
$$x^2 - 12 = 3$$
 21. $x^2 + 25 = 49$

22.
$$3x^2 - 4 = 14$$

23.
$$6x^2 + 5 = 20$$

22.
$$3x^2 - 4 = 14$$
 23. $6x^2 + 5 = 20$ **24.** $20 - 4x^2 = 18$

25. A ball is dropped from a window at a height of 81 feet. The function $h = -16x^2 + 81$ represents the height (in feet) of the ball after x seconds. How long does it take for the ball to hit the ground?

26. The volume of a cone with height h and radius r is given by the formula $V = \frac{1}{3}\pi r^2 h$. Solve the formula for r. Then find the radius of a cone with volume 27π cubic inches and height 4 inches.

Practice B

In Exercises 1-3, determine the number of real solutions of the equation. Then solve the equation using square roots.

1.
$$x^2 = 121$$

2.
$$x^2 = -15$$

3.
$$x^2 = 196$$

In Exercises 4–12, solve the equation using square roots.

4.
$$x^2 + 9 = 0$$

5.
$$4x^2 - 16 = 0$$

5.
$$4x^2 - 16 = 0$$
 6. $-2x^2 + 10 = 10$

7.
$$5x^2 - 21 = 24$$

8.
$$9x^2 + 7 = 8$$

7.
$$5x^2 - 21 = 24$$
 8. $9x^2 + 7 = 8$ **9.** $4x^2 - 38 = 43$

10.
$$(x+5)^2 = 49$$

11.
$$(4x-3)^2 = 25$$

10.
$$(x+5)^2 = 49$$
 11. $(4x-3)^2 = 25$ **12.** $25(x-1)^2 = 49$

In Exercises 13-15, solve the equation using square roots. Round your solutions to the nearest hundredth.

13.
$$2x^2 + 7 = 21$$

14.
$$-16 = 8 - 3x^2$$
 15. $5 = 9x^2 - 6$

15.
$$5 = 9x^2 - 6$$

16. Describe and correct the error in solving the equation $x^2 + 25 = 9$ using square roots.

$$x^{2} + 25 = 9$$

$$x^{2} = -16$$

$$x = \pm 4$$

- 17. A can of juice has a height of 10 inches and a volume of 160π cubic inches. The volume of a can with radius r is given by the formula $V = \pi r^2 h$.
 - **a.** Write an equation describing this situation, where r is the radius of the can.
 - **b.** Find the radius of the can.
- **18.** Solve each equation without graphing.

a.
$$x^2 + 6x + 9 = 25$$

b.
$$x^2 - 10x + 25 = 49$$

c.
$$x^2 - 1 = 24$$