9.2

Solving Quadratic Equations by Graphing For use with Exploration 9.2

Essential Question How can you use a graph to solve a quadratic equation in one variable?

Go to BigIdeasMath.com for an interactive tool to investigate this exploration.

Work with a partner.

- **a.** Sketch the graph of $y = x^2 2x$.
- **b.** What is the definition of an *x*-intercept of a graph? How many *x*-intercepts does this graph have? What are they?
- What is the definition of a solution of an equation in x? How many solutions does the equation x² 2x = 0 have? What are they?

d. Explain how you can verify the solutions you found in part (c).

2

EXPLORATION: Solving Quadratic Equations by Graphing

Go to BigIdeasMath.com for an interactive tool to investigate this exploration.

Work with a partner. Solve each equation by graphing.

b.
$$x^2 + 3x = 0$$

9.2 Solving Quadratic Equations by Graphing (continued)

Communicate Your Answer

- 3. How can you use a graph to solve a quadratic equation in one variable?
- **4.** After you find a solution graphically, how can you check your result algebraically? Check your solutions for parts (a)–(d) in Exploration 2 algebraically.
- 5. How can you determine graphically that a quadratic equation has no solution?

Core Concepts

Solving Quadratic Equations by Graphing

Step 1 Write the equation in standard form, $ax^2 + bx + c = 0$.

Step 2 Graph the related function $y = ax^2 + bx + c$.

Step 3 Find the *x*-intercepts, if any.

The solutions, or *roots*, of $ax^2 + bx + c = 0$ are the *x*-intercepts of the graph.

Notes:

Number of Solutions of a Quadratic Equation

A quadratic equation has:

- two real solutions when the graph of its related function has two *x*-intercepts.
- one real solution when the graph of its related function has one *x*-intercept.
- no real solutions when the graph of its related function has no *x*-intercepts.

Notes:

Worked-Out Examples

Example #1

Use the graph to solve the equation.

$$x^2 - 6x + 8 = 0$$

The graph crosses the *x*-axis at (2, 0) and (4, 0). So, the solutions are x = 2 and x = 4.

Date _____

9.2 Practice (continued)

Example #2

Solve the equation by graphing.

There are no *x*-intercepts. So, $-x^2 = 8x + 20$ has no real solutions.

Practice A

In Exercises 1–9, solve the equation by graphing.

9.2 Practice (continued)

7.
$$x^2 - x - 12 = 0$$
 8. $x^2 - 10x + 25 = 0$ **9.** $x^2 + 4 = 0$

In Exercises 10–15, find the zero(s) of f.

In Exercises 16–18, approximate the zeros of *f* to the nearest tenth.

 $\oint f(x) = x^2 - 5x + 6$

x

Practice B

In Exercises 1 and 2, use the graph to solve the equation.

2. $x^2 - 5x + 9 = 0$ 1. $x^2 + 6x + 9 = 0$ yĂ 2 $y = x^2 - 5x + 9$ х $y = x^2 + 6x + 9$

In Exercises 3–5, write the equation in standard form.

3. $-x^2 = 23$ **4.** $3 - 5x^2 = 9x$ **5.** $6 - 2x = 7x^2$

In Exercises 6–11, solve the equation by graphing.

6.	$-x^2 + 6x = 0$	7. $x^2 - 12x + 36 = 0$	8.	$x^2 - 4x + 8 = 0$
9.	$6x - 7 = -x^2$	10. $x^2 = -x - 1$	11.	$9 - x^2 = -8x$

- **12.** The height *h* (in feet) of a fly ball in a baseball game can be modeled by $h = -16t^2 + 28t + 8$, where t is the time (in seconds).
 - **a.** Do both *t*-intercepts of the graph of the function have meaning in this situation? Explain.
 - **b.** No one caught the fly ball. After how many seconds did the ball hit the ground?

In Exercises 13–15, solve the equation by using Method 2 from Example 3.

13.
$$x^2 = 6x + 7$$
 14. $-20 = x^2 + 9x$ **15.** $x^2 - 24 = 10x$

In Exercises 16–19, graph the function. Approximate the zeros of the function to the nearest tenth when necessary.

16. $f(x) = x^2 + 5x + 2$ **17.** $f(x) = x^2 - 4x + 3$ **19.** $y = \frac{1}{2}x^2 - 3x + 1$ **18.** $y = -x^2 + 3x - 5$

20. The area (in square feet) of an *x*-foot-wide path can be modeled by $y = -0.003x^2 + 0.018x$. Find the width of the path to the nearest foot.