CHAPTER 9 Solving Quadratic Equations

9.1 Solving Polynomial Equations in Factored Form	
---	--

Chapter 9 Maintaining Mathematical Proficiency

Factor the trinomial.

1.
$$x^2 - 6x + 9$$
 2. $x^2 + 4x + 4$
 3. $x^2 - 14x + 49$

 4. $x^2 + 22x + 121$
 5. $x^2 - 24x + 144$
 6. $x^2 + 26x + 169$

Solve the system of linear equations by graphing.

10. y = x + 3

11. y = x + 1y = 3x - 1

x

12. y = 2x - 3

 $y = -\frac{1}{3}x - 1$

9.1

Solving Polynomial Equations in Factored Form For use with Exploration 9.1

Essential Question How can you solve a polynomial equation?

EXPLORATION: Matching Equivalent Forms of an Equation

Work with a partner. An equation is considered to be in *factored form* when the product of the factors is equal to 0. Match each factored form of the equation with its equivalent standard form and nonstandard form.

1	Factored Form	Standard Form	Nonstandard Form
a.	(x-1)(x-3) = 0	A. $x^2 - x - 2 = 0$	1. $x^2 - 5x = -6$
b.	(x-2)(x-3)=0	B. $x^2 + x - 2 = 0$	2. $(x-1)^2 = 4$
c.	(x+1)(x-2) = 0	C. $x^2 - 4x + 3 = 0$	3. $x^2 - x = 2$
d.	(x-1)(x+2) = 0	D. $x^2 - 5x + 6 = 0$	4. $x(x + 1) = 2$
e.	(x+1)(x-3) = 0	E. $x^2 - 2x - 3 = 0$	5. $x^2 - 4x = -3$

2

EXPLORATION: Writing a Conjecture

Go to BigIdeasMath.com for an interactive tool to investigate this exploration.

Work with a partner. Substitute 1, 2, 3, 4, 5, and 6 for x in each equation and determine whether the equation is true. Organize your results in the table. Write a conjecture describing what you discovered.

	Equation	<i>x</i> = 1	<i>x</i> = 2	<i>x</i> = 3	<i>x</i> = 4	<i>x</i> = 5	<i>x</i> = 6
a.	(x-1)(x-2) = 0						
b.	(x-2)(x-3)=0						
c.	(x-3)(x-4)=0						
d.	(x-4)(x-5)=0						
e.	(x-5)(x-6)=0						
f.	(x-6)(x-1)=0						

9.1 Solving Polynomial Equations in Factored Form (continued)

3

EXPLORATION: Special Properties of 0 and 1

Work with a partner. The numbers 0 and 1 have special properties that are shared by no other numbers. For each of the following, decide whether the property is true for 0, 1, both, or neither. Explain your reasoning.

- **a.** When you add _____ to a number *n*, you get *n*.
- **b.** If the product of two numbers is _____, then at least one of the numbers is 0.
- **c.** The square of _____ is equal to itself.
- **d.** When you multiply a number *n* by _____, you get *n*.
- **e.** When you multiply a number *n* by _____, you get 0.
- **f.** The opposite of _____ is equal to itself.

Communicate Your Answer

- 4. How can you solve a polynomial equation?
- **5.** One of the properties in Exploration 3 is called the Zero-Product Property. It is one of the most important properties in all of algebra. Which property is it? Why do you think it is called the Zero-Product Property? Explain how it is used in algebra and why it is so important.

Core Concepts

Zero-Product Property

Words If the product of two real numbers is 0, then at least one of the numbers is 0.

Algebra If a and b are real numbers and ab = 0, then a = 0 or b = 0.

Notes:

Worked-Out Examples

Example #1

Solve the equation.

z (z + 2)(z - 1) = 0 $z = 0 \quad or \quad z + 2 = 0 \quad or \quad z - 1 = 0$ $\frac{-2}{z} = -2 \quad \frac{-2}{-2} \quad \frac{+1}{z} = 1$

The roots are z = 0, z = -2, and z = 1.

Example #2

Solve the equation.

 $6m^{2} + 12m = 0$ 6m(m + 2) = 0 6m = 0 or m + 2 = 0 $\frac{6m}{6} = \frac{0}{6} \frac{-2}{m} = -2$

The roots are m = 0 and m = -2.

9.1 Practice (continued)

Practice A

In Exercises 1–12, solve the equation.

1.
$$x(x+5) = 0$$
 2. $a(a-12) = 0$ **3.** $5p(p-2) = 0$

4.
$$(c-2)(c+1) = 0$$
 5. $(2b-6)(3b+18) = 0$ **6.** $(3-5s)(-3+5s) = 0$

7.
$$(x-3)^2 = 0$$
 8. $(3d+7)(5d-6) = 0$ **9.** $(2t+8)(2t-8) = 0$

10.
$$(w+4)^2(w+1) = 0$$
 11. $g(6-3g)(6+3g) = 0$ **12.** $(4-m)(8+\frac{2}{3}m)(-2-3m) = 0$

Date_____

9.1 **Practice** (continued)

In Exercises 13–18, factor the polynomial.

13.
$$6x^2 + 3x$$
 14. $4y^4 - 20y^3$ **15.** $18u^4 - 6u$

16.
$$7z^7 + 2z^6$$
 17. $24h^3 + 8h$ **18.** $15f^4 - 45f$

In Exercises 19–24, solve the equation.

19. $6k^2 + k = 0$ **20.** $35n - 49n^2 = 0$ **21.** $4z^2 + 52z = 0$

22.
$$6x^2 = -72x$$
 23. $22s = 11s^2$ **24.** $7p^2 = 21p$

25. A boy kicks a ball in the air. The height y (in feet) above the ground of the ball is modeled by the equation $y = -16x^2 + 80x$, where x is the time (in seconds) since the ball was kicked. Find the roots of the equation when y = 0. Explain what the roots mean in this situation.

Practice B

In Exercises 1–9, solve the equation.

1. -3y(y-4) = 02. (d-6)(d+1) = 03. (w+3)(w-5) = 04. (2-3x)(2+3x) = 05. 9h(h-4)(3h+2) = 06. $k(k+2)^2 = 0$ 7. $(y-7)^2(y+9) = 0$ 8. (12-4n)(3n-5)(-n+2) = 09. $(5-n)(3-\frac{1}{2}n)(n-4) = 0$

In Exercises 10 and 11, find the *x*-coordinates of the points where the graph crosses the *x*-axis.

In Exercises 12–14, factor the polynomial.

12. $36v^2 + 24v$ **13.** $3r^6 - 2r^5$ **14.** $18a^5 + 12a$

In Exercises 15–17, solve the equation.

15.
$$16h^2 - 8h = 0$$

16. $4w^2 = 12w$
17. $-32n = 8n^2$
18. Describe and correct
the error in solving
the equation.
16. $4w^2 = 12w$
17. $-32n = 8n^2$
18. $15t^2 = 5t$
 $3t = 1$
 $t = \frac{1}{3}$
The root is $t = \frac{1}{3}$.

19. Write a polynomial of degree 3 whose only roots are x = 2 and $x = \frac{2}{5}$. Is there another polynomial of degree 3 that has the same roots?