8.4 Graphing $f(x) = a(x - h)^2 + k$ For use with Exploration 8.4

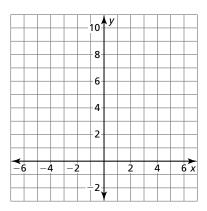
Essential Question How can you describe the graph of $f(x) = a(x-h)^2$?

EXPLORATION: Graphing $y = a(x - h)^2$ When h > 0

Go to BigIdeasMath.com for an interactive tool to investigate this exploration.

Work with a partner. Sketch the graphs of the functions in the same coordinate plane. How does the value of *h* affect the graph of $y = a(x - h)^2$?

a.
$$f(x) = x^2$$
 and $g(x) = (x - 2)^2$



b.
$$f(x) = 2x^2$$
 and $g(x) = 2(x-2)^2$

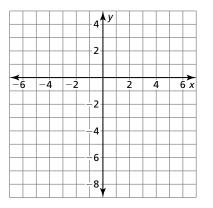
			10	y y			_	
			8			_	+	
			6-					
			4-					
			2-					
≺ −6	-4	-2			2	4		6 x
			2-	1				

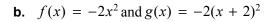
2

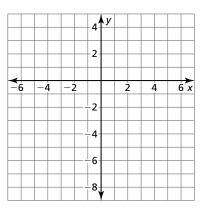
Go to BigIdeasMath.com for an interactive tool to investigate this exploration.

Work with a partner. Sketch the graphs of the functions in the same coordinate plane. How does the value of h affect the graph of $y = a(x - h)^2$?

a.
$$f(x) = -x^2$$
 and $g(x) = -(x+2)^2$







Communicate Your Answer

- **3.** How can you describe the graph of $f(x) = a(x h)^2$?
- **4.** Without graphing, describe the graph of each function. Use a graphing calculator to check your answer.
 - **a.** $y = (x 3)^2$

b.
$$y = (x + 3)^2$$

c.
$$y = -(x - 3)^2$$

Date

8.4 Practice For use after Lesson 8.4

Core Concepts

Even and Odd Functions

A function y = f(x) is even when f(-x) = f(x) for each x in the domain of f. The graph of an even function is symmetric about the y-axis.

A function y = f(x) is **odd** when f(-x) = -f(x) for each x in the domain of f. The graph of an odd function is symmetric about the origin. A graph is *symmetric about the origin* when it looks the same after reflections in the x-axis and then in the y-axis.

Notes:

Graphing $f(x) = a(x-h)^2$

- When h > 0, the graph of $f(x) = a(x h)^2$ is a horizontal translation *h* units right of the graph $f(x) = ax^2$.
- When h < 0, the graph of $f(x) = a(x h)^2$ is a horizontal translation |h| units left of the graph of $f(x) = ax^2$.

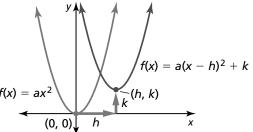
The vertex of the graph of $f(x) = a(x - h)^2$ is (h, 0), and the axis of symmetry is x = h.

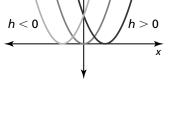
Notes:

Graphing $f(x) = a(x-h)^2 + k$

The vertex form of a quadratic function is $f(x) = a(x - h)^2 + k$, where $a \neq 0$. The graph of $f(x) = a(x - h)^2 + k$ is a translation *h* units horizontally and *k* units vertically of the graph of $f(x) = ax^2$.

The vertex of the graph of $f(x) = a(x - h)^2 + k$ is (h, k), and the axis of symmetry is x = h.





8.4 **Practice** (continued)

Worked-Out Examples

Example #1

Determine whether the function is even, odd, or neither.

f(x) = 4x + 3f(-x) = 4(-x) + 3= -4x + 3

Because f(x) = 4x + 3 and -f(x) = -4x - 3, you can conclude that $f(-x) \neq f(x)$ and $f(-x) \neq -f(x)$. So, the function is neither odd nor even.

Example #2

Find the vertex and the axis of symmetry of the graph of the function.

 $f(x) = 3(x+1)^2$

For $f(x) = 3(x + 1)^2$, because h = -1, the axis of symmetry is x = -1, and the vertex is (-1, 0).

Practice A

In Exercises 1-4, determine whether the function is even, odd, or neither.

- **1.** f(x) = 5x **2.** $f(x) = -4x^2$
- **3.** $h(x) = \frac{1}{2}x^2$ **4.** $f(x) = -3x^2 + 2x + 1$

In Exercises 5–8, find the vertex and the axis of symmetry of the graph of the function.

5.
$$f(x) = 5(x-2)^2$$

6. $f(x) = -4(x+8)^2$

8.4 **Practice** (continued)

7.
$$p(x) = -\frac{1}{2}(x-1)^2 + 4$$

8. $g(x) = -(x+1)^2 - 5$

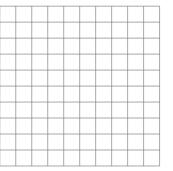
In Exercises 9 and 10, graph the function. Compare the graph to the graph of $f(x) = x^2$.

9. $m(x) = 3(x+2)^2$ 10. $g(x) = -\frac{1}{4}(x-6)^2 + 4$

In Exercises 11 and 12, graph g.

11.
$$f(x) = 3(x+1)^2 - 1; g(x) = f(x+2)$$

12.
$$f(x) = \frac{1}{2}(x-3)^2 - 5; g(x) = -f(x)$$

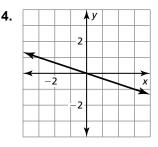


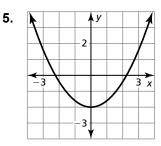
Practice B

In Exercises 1–3, determine whether the function is even, odd, or neither.

1.
$$f(x) = 3x^2 + 2x$$
 2. $g(x) = \frac{2}{3}x$ **3.** $h(x) = \frac{1}{3}x^2 - 2$

In Exercises 4 and 5, determine whether the function represented by the graph is *even*, *odd*, or *neither*.





In Exercises 6–8, find the vertex and the axis of symmetry of the graph of the function.

6.
$$f(x) = -\frac{1}{3}(x+6)^2$$
 7. $f(x) = 9(x-4)^2$ **8.** $y = -10(x+9)^2$

In Exercises 9–11, graph the function. Compare the graph to the graph of $f(x) = x^2$.

9.
$$g(x) = 4(x+2)^2$$
 10. $g(x) = \frac{1}{3}(x-5)^2$ **11.** $g(x) = \frac{1}{6}(x-1)^2$

In Exercises 12–14, find the vertex and the axis of symmetry of the graph of the function.

12.
$$y = 6(x-4)^2 - 3$$
 13. $f(x) = -4(x+1)^2 + 5$ **14.** $y = -(x+3)^2 - 2$

In Exercises 15 and 16, graph the function. Compare the graph to the graph of $f(x) = x^2$.

15.
$$g(x) = 3(x+2)^2 - 1$$

16. $g(x) = -\frac{1}{2}(x-1)^2 + 3$

In Exercises 17 and 18, rewrite the quadratic function in vertex form.

17. $y = 5x^2 - 10x + 2$ **18.** $f(x) = -2x^2 + 8x + 5$

19. The graph of $y = x^2$ is reflected in the x-axis and translated 3 units right and 2 units up. Write an equation for the function in vertex form and in standard form. Describe advantages of writing the function in each form.