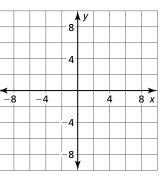
B.3 Graphing $f(x) = ax^2 + bx + c$ For use with Exploration 8.3

Essential Question How can you find the vertex of the graph of $f(x) = ax^2 + bx + c$?


EXPLORATION: Comparing *x*-Intercepts with the Vertex

Go to *BigIdeasMath.com* for an interactive tool to investigate this exploration.

Work with a partner.

a. Sketch the graphs of $y = 2x^2 - 8x$ and $y = 2x^2 - 8x + 6$.

		↓ y		
		8		
		-4		
≺ _8				>
_0	_1		i à l	g v
-8	-4	4	4	8 x
-8	-4	4	4	8 x

b. What do you notice about the *x*-coordinate of the vertex of each graph?

c. Use the graph of $y = 2x^2 - 8x$ to find its *x*-intercepts. Verify your answer by solving $0 = 2x^2 - 8x$.

d. Compare the value of the *x*-coordinate of the vertex with the values of the *x*-intercepts.

8.3 Graphing $f(x) = ax^2 + bx + c$ (continued)

EXPLORATION: Finding *x*-Intercepts

Work with a partner.

- **a.** Solve $0 = ax^2 + bx$ for x by factoring.
- **b.** What are the *x*-intercepts of the graph of $y = ax^2 + bx$?
- **c.** Complete the table to verify your answer.

x	$y = ax^2 + bx$
0	
$-\frac{b}{a}$	

Date

EXPLORATION: Deductive Reasoning

Work with a partner. Complete the following logical argument.

The x-intercepts of the graph of $y = ax^2 + bx$ are 0 and $-\frac{b}{a}$.

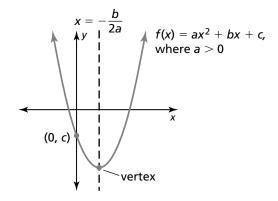
The vertex of the graph of $y = ax^2 + bx$ occurs when x =_____.

The vertices of the graphs of $y = ax^2 + bx$ and $y = ax^2 + bx + c$ have the same x-coordinate.

The vertex of the graph of $y = ax^2 + bx + c$ occurs when x =_____.

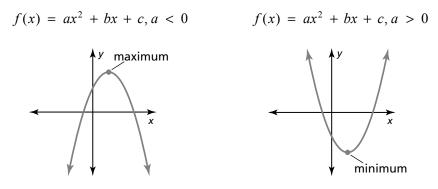
Communicate Your Answer

- **4.** How can you find the vertex of the graph of $f(x) = ax^2 + bx + c$?
- 5. Without graphing, find the vertex of the graph of $f(x) = x^2 4x + 3$. Check your result by graphing.



Core Concepts

Graphing $f(x) = ax^2 + bx + c$


- The graph opens up when a > 0, and the graph opens down when a < 0.
- The *y*-intercept is *c*.
- The x-coordinate of the vertex is $-\frac{b}{2a}$.
- The axis of symmetry is $x = -\frac{b}{2a}$.

Notes:

Maximum and Minimum Values

The y-coordinate of the vertex of the graph of $f(x) = ax^2 + bx + c$ is the **maximum value** of the function when a < 0 or the **minimum value** of the function when a > 0.

Notes:

Practice (continued) 8.3

Worked-Out Examples

Example #1

Find the vertex, the axis of symmetry, and the y-intercept of the graph.

The vertex is (-3, 2). The axis of symmetry is x = -3. The y-intercept of the graph is -1.

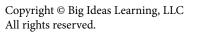
Example #2

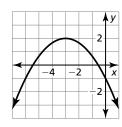
Find (a) the axis of symmetry and (b) the vertex of the graph of the function.

.

$$y = -9x^{2} - 18x - 1$$

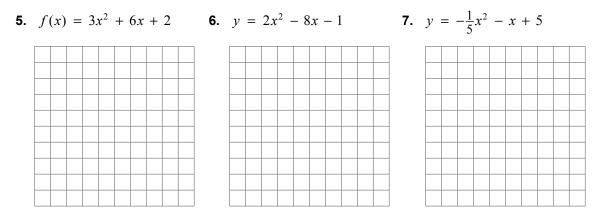
a. $x = -\frac{b}{2a} = -\frac{(-18)}{2(-9)} = \frac{18}{-18} = -1$
The axis of symmetry is $x = -1$.
b. $y = -9x^{2} - 18x - 1$
 $y = -9(-1)^{2} - 18(-1) - 1$
 $= -9(1) + 18 - 1$
 $= -9 + 18 - 1$
 $= 9 - 1$
 $= 8$


The vertex is (-1, 8).


Practice A

In Exercises 1-4, find (a) the axis of symmetry and (b) the vertex of the graph of the function.

1.
$$f(x) = x^2 - 10x + 2$$
 2. $y = -4x^2 + 16x$

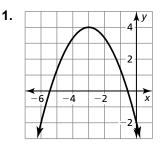

3.
$$y = -2x^2 - 8x + 5$$

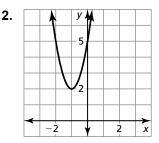
4. $f(x) = -3x^2 + 6x + 1$

8.3 **Practice** (continued)

In Exercises 5–7, graph the function. Describe the domain and range.

In Exercises 8–13, tell whether the function has a minimum value or a maximum value. Then find the value.


8.
$$y = -\frac{1}{2}x^2 - 5x + 2$$
 9. $y = 8x^2 + 16x - 2$ **10.** $y = -x^2 - 4x - 7$


11.
$$y = -7x^2 + 7x + 5$$
 12. $y = 9x^2 + 6x + 4$ **13.** $y = -\frac{1}{4}x^2 + x - 6$

- 14. The function $h = -16t^2 + 250t$ represents the height h (in feet) of a rocket t seconds after it is launched. The rocket explodes at its highest point.
 - **a.** When does the rocket explode?
 - **b.** At what height does the rocket explode?

Practice B

In Exercises 1 and 2, find the vertex, the axis of symmetry, and the *y*-intercept of the graph.

In Exercises 3–6, find (a) the axis of symmetry and (b) the vertex of the graph of the function.

3. $f(x) = 4x^2 + 12x$ **4.** $y = -5x^2 - 20x + 4$ **5.** $y = -8x^2 + 24x + 13$ **6.** $f(x) = \frac{2}{3}x^2 - 6x + 15$

In Exercises 7–10, graph the function. Describe the domain and range.

- 7. $f(x) = 4x^2 + 8x + 11$ 8. $y = -6x^2 - 12x - 7$ 9. $y = \frac{1}{2}x^2 - 8x + 3$ 10. $f(x) = -\frac{2}{3}x^2 + 4x + 2$
- 11. Describe and correct the error in finding the vertex of the graph of $y = x^2 + 6x + 2$.

X
$$x = -\frac{b}{2a} = -\frac{6}{2(1)} = -3$$

So, the vertex is (-3, 2).

In Exercises 12 and 13, tell whether the function has a minimum value or a maximum value. Then find the value.

12.
$$f(x) = -6x^2 + 24x - 5$$
 13. $y = \frac{1}{3}x^2 + 8x - 1$

In Exercises 14 and 15, use the *minimum* or *maximum* feature of a graphing calculator to approximate the vertex of the graph of the function.

14.
$$y = -2.1x^2 + \pi x + 3$$

15. $y = 1.25x^2 - 2^{3/4}x + 3$