7.6 Factoring Special Products For use with Exploration 7.6

Essential Question How can you recognize and factor special products?

EXPLORATION: Factoring Special Products

Go to *BigIdeasMath.com* for an interactive tool to investigate this exploration.

Work with a partner. Use algebra tiles to write each polynomial as the product of two binomials. Check your answer by multiplying. State whether the product is a "special product" that you studied in Section 2.3.

d. $4x^2 - 6x + 2 =$

2

7.6 Factoring Special Products (continued)

Go to BigIdeasMath.com for an interactive tool to investigate this exploration.

Work with a partner. Use algebra tiles to complete the rectangular arrays in three different ways, so that each way represents a different special product. Write each special product in standard form and in factored form.

Communicate Your Answer

3. How can you recognize and factor special products? Describe a strategy for recognizing which polynomials can be factored as special products.

4. Use the strategy you described in Question 3 to factor each polynomial.

a.
$$25x^2 + 10x + 1$$
 b. $25x^2 - 10x + 1$ **c.** $25x^2 - 1$

Date

Name

Core Concepts

Difference of Two Squares Pattern

Algebra

Example

Example

 $a^2 - b^2 = (a + b)(a - b)$

 $x^{2} - 9 = x^{2} - 3^{2} = (x + 3)(x - 3)$

Notes:

Perfect Square Trinomial Pattern

Algebra

$a^{2} + 2ab + b^{2} = (a + b)^{2}$ $x^{2} + 6x + 9 = x^{2} + 2(x)(3) + 3^{2}$ $= (x + 3)^{2}$ $a^{2} - 2ab + b^{2} = (a - b)^{2}$ $x^{2} - 6x + 9 = x^{2} - 2(x)(3) + 3^{2}$ $= (x - 3)^{2}$

Notes:

Worked-Out Examples

Example #1

Factor the polynomial.

 $16x^{2} - 169y^{2} = (4x)^{2} - (13y)^{2}$ = (4x + 13y)(4x - 13y)So, $16x^{2} - 169y^{2} = (4x + 13y)(4x - 13y).$

Example #2

Factor the polynomial.

$$3z^{2} - 27 = 3(z^{2} - 9)$$

= 3(z² - 3²)
= 3(z + 3)(z - 3)
So, 3z² - 27 = 3(z + 3)(z - 3).

Date _____

7.6 Practice (continued)

Practice A

In Exercises 1–6, factor the polynomial.

1.
$$s^2 - 49$$
 2. $t^2 - 81$ **3.** $16 - x^2$

4.
$$4g^2 - 25$$
 5. $36h^2 - 121$ **6.** $81 - 49k^2$

In Exercises 7–12, use a special product pattern to evaluate the expression.

7. $57^2 - 53^2$ **8.** $38^2 - 32^2$ **9.** $68^2 - 64^2$

10.
$$45^2 - 40^2$$
 11. $79^2 - 71^2$ **12.** $86^2 - 84^2$

7.6 Practice (continued)

In Exercises 13–18, factor the polynomial.

13. $x^2 + 16x + 64$ **14.** $p^2 + 28p + 196$ **15.** $r^2 - 26r + 169$

16.
$$a^2 - 18a + 81$$
 17. $36c^2 + 84c + 49$ **18.** $100x^2 - 20x + 1$

In Exercises 19–24, solve the equation.

19. $x^2 - 144 = 0$ **20.** $9y^2 = 49$ **21.** $c^2 + 14c + 49 = 0$

22.
$$d^2 - 4d + 4 = 0$$
 23. $n^2 + \frac{2}{3}n = -\frac{1}{9}$ **24.** $-\frac{6}{5}k + \frac{9}{25} = -k^2$

25. The dimensions of a rectangular prism are (x + 1) feet by (x + 2) feet by 4 feet. The volume of the prism is (24x - 1) cubic feet. What is the value of x?

Practice B

In Exercises 1–3, factor the polynomial.

1. $100 - 49x^2$ **2.** $121s^2 - 25t^2$ **3.** $x^2 - 144y^2$

In Exercises 4–6, use a special product pattern to evaluate the expression.

4. $86^2 - 84^2$ **5.** $44^2 - 39^2$ **6.** $28^2 - 27^2$

In Exercises 7–9, factor the polynomial.

- **7.** $z^2 + 26z + 169$ **8.** $16x^2 40x + 25$ **9.** $81a^2 + 36a + 4$
- **10.** The area (in square inches) of a square table can be represented by $25x^2 + 40x + 16$.
 - **a.** Write an expression that represents the side length of the table.
 - **b.** Will a square table cloth with side length 60 inches cover the table when x = 12?

In Exercises 11–14, solve the equation.

11. $100x^2 = 81$ **12.** $w^2 + 24w + 144 = 0$ **13.** $s^2 + 81 = 18s$ **14.** $y^2 - \frac{1}{3}y = -\frac{1}{36}$

In Exercises 15–17, factor the polynomial.

- **15.** $8y^2 72$ **16.** $7p^2 + 56p + 112$ **17.** $48t^2 72t + 27$
- **18.** The function $y = -16t^2 + 24t$ represents the height y (in feet) of a tennis ball bouncing straight up from the ground t seconds after it bounces. After how many seconds does the tennis ball return to the ground?
- **19.** Tell whether the polynomial can be factored. If not, change the constant term so that the polynomial is a perfect square trinomial.

a.
$$q^2 + \frac{1}{2}q + \frac{1}{3}$$
 b. $4x^2 + 28x + 47$

- **20.** A square picture frame has side length x inches. The square opening for a picture within the frame has side length 6 inches.
 - **a.** Write a polynomial that represents the area of the picture frame, not including the picture.
 - **b.** The area in part (a) is 64 square inches. What is the side length of the picture frame? Explain your reasoning.