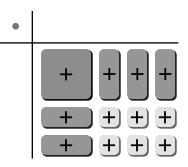
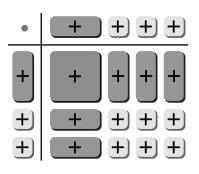
1

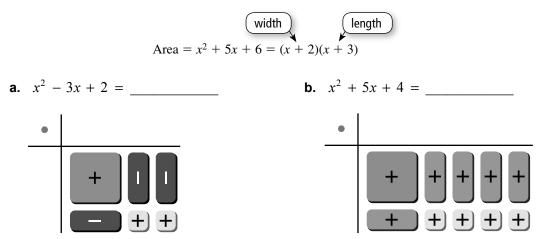
Factoring $x^2 + bx + c$ For use with Exploration 7.4

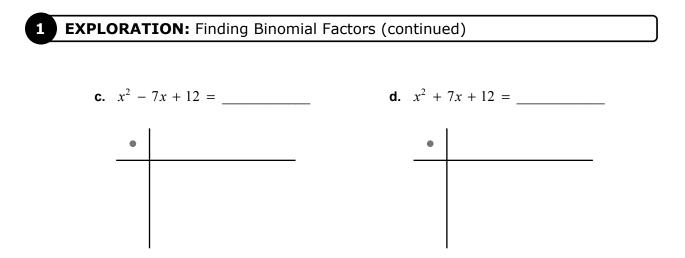

Essential Question How can you use algebra tiles to factor the trinomial $x^2 + bx + c$ into the product of two binomials?

EXPLORATION: Finding Binomial Factors


Go to BigIdeasMath.com for an interactive tool to investigate this exploration.

Work with a partner. Use algebra tiles to write each polynomial as the product of two binomials. Check your answer by multiplying.


- **Sample** $x^2 + 5x + 6$
- **Step 1** Arrange algebra tiles that model $x^2 + 5x + 6$ into a rectangular array.


Step 2 Use additional algebra tiles to model the dimensions of the rectangle.

Step 3 Write the polynomial in factored form using the dimensions of the rectangle.

7.4 Factoring $x^2 + bx + c$ (continued)

Communicate Your Answer

2. How can you use algebra tiles to factor the trinomial $x^2 + bx + c$ into the product of two binomials?

3. Describe a strategy for factoring the trinomial $x^2 + bx + c$ that does not use algebra tiles.

Name

Core Concepts

Factoring $x^2 + bx + c$ When c ls Positive

Algebra $x^2 + bx + c = (x + p)(x + q)$ when p + q = b and pq = c. When c is positive, p and q have the same sign as b. Examples $x^2 + 6x + 5 = (x + 1)(x + 5)$ $x^2 - 6x + 5 = (x - 1)(x - 5)$

Notes:

Factoring	X ²	+	bx	+	С	When	С	ls	Negative
-----------	-----------------------	---	----	---	---	------	---	----	----------

Algebra	$x^{2} + bx + c = (x + p)(x + q)$ when $p + q = b$ and $pq = c$.
	When c is negative, p and q have different signs.
Example	$x^2 - 4x - 5 = (x + 1)(x - 5)$

Notes:

Worked-Out Examples

Example #1

Factor the polynomial.

 $s^2 + 3s - 40$

Factors of -40	-1, 40	1, -40	-2, 20	2, -20	-4, 10	4, -10	-5, 8	5, -8
Sum of factors	39	-39	18	-18	6	-6	3	-3

So, $s^2 + 3s - 40 = (s - 5)(s + 8)$.

7.4 Practice (continued)

Example #2

Solve the equation.

$$b^{2} + 5 = 8b - 10$$

$$b^{2} + 5 - 8b = 8b - 8b - 10$$

$$b^{2} - 8b + 5 = -10$$

$$b^{2} - 8b + 5 + 10 = -10 + 10$$

$$b^{2} - 8b + 15 = 0$$

$$(b - 3)(b - 5) = 0$$
Factors of 15 -1, -15 -3, -5
Sum of factors -16 -8
$$b - 3 = 0 \quad or \quad b - 5 = 0$$

 $\frac{+3}{b} = \frac{+3}{3} \qquad \qquad \frac{+5}{b} = \frac{+5}{5}$

The roots are b = 3 and b = 5.

Practice A

In Exercises 1–12, factor the polynomial.

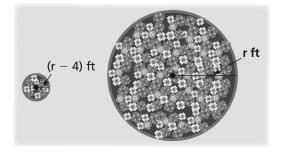
1.
$$c^2 + 8c + 7$$
 2. $a^2 + 16a + 64$ **3.** $x^2 + 11x + 18$

4.
$$d^2 + 6d + 8$$
 5. $s^2 + 11s + 10$ **6.** $u^2 + 10u + 9$

7.
$$b^2 + 3b - 54$$
 8. $y^2 - y - 2$ **9.** $u^2 + 3u - 18$

10.
$$z^2 - z - 56$$
 11. $h^2 + 2h - 24$ **12.** $f^2 - 3f - 40$

7.4 **Practice** (continued)


In Exercises 13–18, solve the equation.

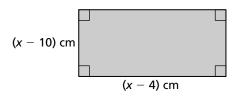
13.
$$g^2 - 13g + 40 = 0$$
 14. $k^2 - 5k + 6 = 0$ **15.** $w^2 - 7w + 10 = 0$

16. $x^2 - x = 30$ **17.** $r^2 - 3r = -2$ **18.** $t^2 - 7t = 8$

19. The area of a right triangle is 16 square miles. One leg of the triangle is 4 miles longer than the other leg. Find the length of each leg.

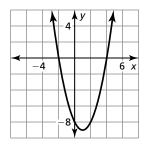
20. You have two circular flower beds, as shown. The sum of the areas of the two flower beds is 136π square feet. Find the radius of each bed.

Practice B


In Exercises 1–12, factor the polynomial.

- 1. $x^2 + 5x + 4$ 2. $w^2 + 9w + 14$ 3. $y^2 + 15y + 36$ 4. $x^2 14x + 45$ 5. $j^2 16j + 39$ 6. $m^2 19m + 90$ 7. $y^2 + 2y 35$ 8. $w^2 8w 20$ 9. $b^2 b 30$ 10. $p^2 6p 27$ 11. $q + q^2 56$ 12. $-36 + t^2 + 5t$
- **13.** Describe and correct the error in factoring the polynomial.

$$\times x^2 + 4x - 96 = (x - 12)(x + 8)$$


In Exercises 14 and 15, find the dimensions of the polygon with the given area.

14. Area = 120 m^2

15. Area = 55 cm^2

16. The graph shows $y = x^2 - 2x - 8$.

- **a.** Explain how you can use the graph to factor the polynomial.
- **b.** Factor the polynomial.