6.4

Comparing Linear and Exponential Functions For use with Exploration 6.4

Essential Question How can you compare the growth rates of linear and exponential functions?

1 EXPLORATION: Comparing Values

Work with a partner. An art collector buys two paintings. The value of each painting after *t* year is *y* dollars. Complete each table. Compare the values of the two paintings. Which painting's value has a constant growth rate? Which painting's value has an increasing growth rate? Explain your reasoning.

t	y = 19t + 5
0	
1	
2	
3	
4	

t	$y = 3^t$
0	
1	
2	
3	
4	

2

3

6.4 Comparing Linear and Exponential Functions (continued)

EXPLORATION: Comparing Values

Work with a partner. Analyze the values of the two paintings over the given time periods. The value of each painting after *t* years is *y* dollars. Which painting's value eventually overtakes the other?

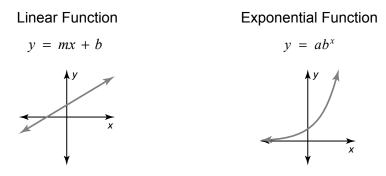
t	y = 19t + 5
4	
5	
6	
7	
8	
9	

t	$y = 3^t$
4	
5	
6	
7	
8	
9	

EXPLORATION: Comparing Graphs

Work with a partner. Use the tables in Explorations 1 and 2 to graph y = 19t + 5 and $y = 3^t$ in the same coordinate plane. Compares the graph of the functions.

Communicate Your Answer


- 3. How can you compare the growth rates of linear and exponential functions?
- **4.** Which function has a growth rate that is eventually much greater than the growth rates of the other function? Explain your reasoning.

Name

Core Concepts

Linear, Exponential, and Quadratic Functions

Notes:

Differences and Ratios of Functions

You can use patterns between consecutive data pairs to determine which type of function models the data.

- Linear Function The differences of consecutive y-values are constant.
- Exponential Function Consecutive y-values have a common ratio.

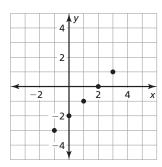
In each case, the differences of consecutive *x*-values need to be constant.

Notes:

Comparing Functions Using Average Rates of Change

As *a* and *b* increase, the average rate of change between x = a and x = b of an increasing exponential function y = f(x) will eventually exceed the average rate of change between x = a and x = b of an increasing linear function y = g(x). So, as *x* increases, f(x) will eventually exceed g(x).

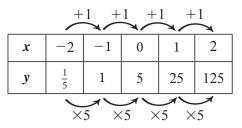
Notes:


Practice (continued) 6.4

Worked-Out Examples

Example #1

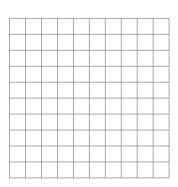
Plot the points. Tell whether the points appear to represent a linear function, an exponential function, or neither.

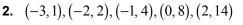

(-1, -3), (0, -2), (1, -1), (2, 0), (3, 1)

The points appear to lie on a straight line. So, they appear to represent a linear function.

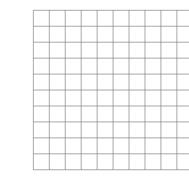
Example #2

Tell whether the table of values represents a linear or an exponential function. Then write the function.

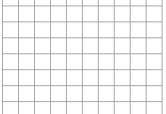



Consecutive y-values have a common ratio of 5, and the y-intercept is 5. So, the table represents the exponential function $y = 5(5)^x$.

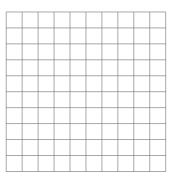
Practice A


In Exercises 1-4, plot the points. Tell whether the points appear to represent a linear function, an exponential function, or neither.

1. (-3, 2), (-2, 4), (-4, 4), (-1, 8), (-5, 8)**2.** (-3, 1), (-2, 2), (-1, 4), (0, 8), (2, 14)



Date



Copyright © Big Ideas Learning, LLC All rights reserved.

Practice (continued) 6.4 **3.** (4, 0), (2, 1), (0, 3), (-1, 6), (-2, 10)

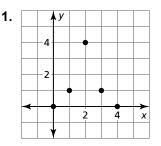
4.	(2, -4), (0	, -2), (-2,	, 0), (-4,	2), (-6, 4)
----	-------------	-------------	------------	-------------

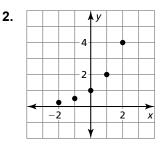
In Exercises 5 and 6, tell whether the table of values represents a linear, or an exponential function.

5.	x	-2	-1	0	1	2
	y	7	4	1	-2	-5

6.	x	-2	-1	0	1	2
	y	$\frac{1}{18}$	$\frac{1}{3}$	2	12	72

In Exercises 7 and 8, tell whether the data represent a linear, or an exponential function. Then write the function.


7. (-2, -4), (-1, -1), (0, 2), (1, 5), (2, 8)**8.** (-2, 1.75), (-1, 3.5), (0, 7), (1, 14), (2, 28)


9. A person invests \$1000 into an account that earns compound interest. The table shows the amount A (in dollars) in the account after t (in years) time has passed. Tell whether the data can be modeled by a *linear* or an *exponential* function. Explain.

Time, <i>t</i>	0	1	2	3	4	
Amount, A	1000	1050	1102.50	1157.63	1215.51	

Practice B

In Exercises 1 and 2, tell whether the points appear to represent a *linear function*, an *exponential function*, or *neither*.

In Exercises 3–6, plot the points. Tell whether the points appear to represent a *linear function*, an *exponential function*, or *neither*.

- **3.** $\left(2, \frac{1}{16}\right), \left(1, \frac{1}{4}\right), \left(0, 1\right), \left(-1, 4\right), \left(-2, 16\right)$
- **4.** (-1, 5), (0, 0), (1, -1), (2, 0), (3, 5)
- **5.** (-4, -3), (-2, -2), (0, -1), (2, 0), (4, 1)
- **6.** (-3, -6), (-2, -4), (-1, -2), (0, 0), (1, 2)

In Exercises 7–10, tell whether the table of values represents a *linear*, or an *exponential* function. Then write the function.

7.	x	-3	-2	-1	0	1	2	8.	x	1	2	3	4	5	6
	y	8	4	2	1	0.5	0.25		у	2	0	-2	-4	-6	-8
_															
9.	x	1	2	3	4	5	6	10.	x	-1	() 1	2	3	
	у	-8	-5	-2	1	4	7		v	3	10.0			$\frac{3}{1}$	-
		-			-				1	2	4	2 4	1 8	16)

11. Write a function that has an average rate of change that is constant.