Exponential FunctionsFor use with Exploration 6.2

Essential Question What are some of the characteristics of the graph of an exponential function?

1 EXPLORATION: Exploring an Exponential Function

Work with a partner. Complete each table for the *exponential function* $y = 16(2)^x$. In each table, what do you notice about the values of x? What do you notice about the values of y?

	3	
x	$y = 16(2)^x$	
0		
1		<
2		
3		\leq
4		
5		کیا

x	$y = 16(2)^x$	
0		
2		
4		
6		<
8		<
10		كم

2 **EXPLORATION**: Exploring an Exponential Function

Work with a partner. Repeat Exploration 1 for the exponential function $y = 16\left(\frac{1}{2}\right)^x$.

$$x \quad y = 16\left(\frac{1}{2}\right)^{x}$$

$$0$$

$$1$$

$$2$$

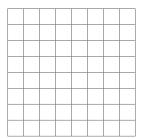
$$3$$

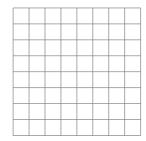
$$4$$

$$5$$

X	$y = 16 \left(\frac{1}{2}\right)^x$	
0		
2		<
4		
6		\leq
8		<
10		كيد

Do you think the statement below is true for *any* exponential function? Justify your answer.

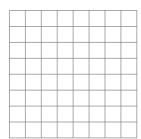

"As the independent variable x changes by a constant amount, the dependent variable y is multiplied by a constant factor."


Exponential Functions (continued)

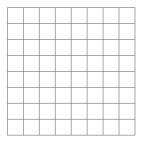
3 EXPLORATION: Graphing Exponential Functions

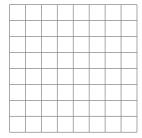
Go to BigIdeasMath.com for an interactive tool to investigate this exploration.

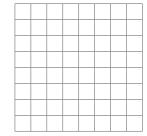
Work with a partner. Sketch the graphs of the functions given in Explorations 1 and 2. How are the graphs similar? How are they different?


Communicate Your Answer

- **4.** What are some of the characteristics of the graph of an exponential function?
- **5.** Sketch the graph of each exponential function. Does each graph have the characteristics you described in Question 4? Explain your reasoning.


a.
$$y = 2^x$$

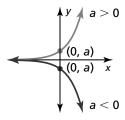

b.
$$y = 2(3)^x$$


c.
$$y = 3(1.5)^x$$

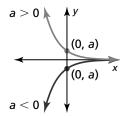
$$\mathbf{d.} \quad y = \left(\frac{1}{2}\right)^x$$

e.
$$y = 3\left(\frac{1}{2}\right)^x$$

f.
$$y = 2\left(\frac{3}{4}\right)^x$$



Name _____ Date _____


Practice
For use after Lesson 6.2

Core Concepts

Graphing
$$y = ab^x$$
 When $b > 1$

Graphing $y = ab^x$ When 0 < b < 1

Notes:

Worked-Out Examples

Example #1

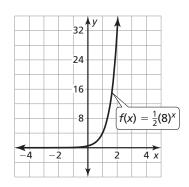
Evaluate the function for the given value of x.

$$y = \frac{1}{4}(4)^{x}; \quad x = 5$$

$$y = \frac{1}{4}(4)^{x}$$

$$y = \frac{1}{4}(4)^{5}$$

$$= \frac{1}{4}(1024)$$


$$= 256$$

Example #2

Graph the function. Compare the graph to the graph of the parent function. Describe the domain and range of f.

$$f(x) = \frac{1}{2} (8)^x$$

x	-2	-1	0	1	2
$\frac{1}{2}(8)^x$	$\frac{1}{2}(8)^{-2}$	$\frac{1}{2}(8)^{-1}$	$\frac{1}{2}(8)^0$	$\frac{1}{2}(8)^1$	$\frac{1}{2}(8)^2$
f(x)	$\frac{1}{128}$	$\frac{1}{16}$	$\frac{1}{2}$	4	32

The parent function is $g(x) = 8^x$. The graph of f is a vertical shrink of the graph of g by a factor of $\frac{1}{2}$. The g-intercept of the graph of g, g, is below the g-intercept of the graph of g, g. From the graph of g, you can see that the domain is all real numbers and the range is g > 0.

Practice (continued)

Practice A

In Exercises 1–4, determine whether the table represents an exponential function. Explain.

1.

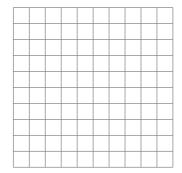
X	У
1	8
2	4
3	2
4	1

x	У
1	3
2	7
3	11
4	15

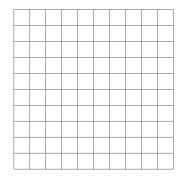
X	У
-1	12
0	9
1	6
2	3

X	У
-1	0.125
0	0.5
1	2
2	8

In Exercises 5–7, evaluate the function for the given value of x.

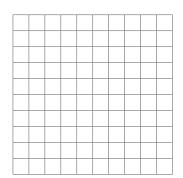

5.
$$v = 3^x$$
: $x = 5$

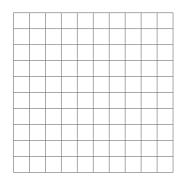
5.
$$y = 3^x$$
; $x = 5$ **6.** $y = \left(\frac{1}{4}\right)^x$; $x = 3$ **7.** $y = 3(4)^x$; $x = 4$


7.
$$y = 3(4)^x$$
; $x = 4$

In Exercises 8 and 9, graph the function. Compare the graph to the graph of the parent function. Describe the domain and range of f.

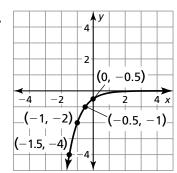
8.
$$f(x) = -2^x$$


9.
$$f(x) = 2(\frac{1}{4})^x$$

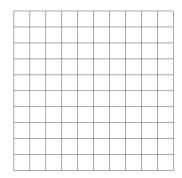

6.2 Practice (continued)

In Exercises 10 and 11, graph the function. Describe the domain and range.

10.
$$f(x) = 4^x - 2$$



11.
$$f(x) = 4\left(\frac{1}{2}\right)^{x+1}$$



In Exercises 12 and 13, write an exponential function represented by the table or graph.

x	0	1	2	3
f(x)	3	18	108	648

14. Graph the function $f(x) = 2^x$. Then graph $g(x) = 2^x + 3$. How are the y-intercept, domain, and range affected by the translation?

Practice B

In Exercises 1–3, determine whether the equation represents an exponential function. Explain.

1.
$$y = -6^x$$

2.
$$y = 5(1)^x$$

3.
$$y = 7x^3$$

In Exercises 4 and 5, determine whether the table represents an exponential function. Explain.

4.

x	У
1	5
2	2
3	-1
4	-4

x	У
1	24
2	12
3	6
4	3

In Exercises 6 and 7, evaluate the function for the given value of x.

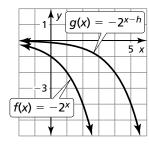
6.
$$y = (1.2)^x$$
; $x = 2$

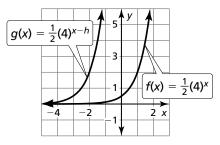
7.
$$f(x) = \frac{1}{2}(8)^x$$
; $x = -2$

In Exercises 8-10, graph the function. Compare the graph to the graph of the parent function. Describe the domain and range of f.

8.
$$f(x) = 5(\frac{1}{4})^3$$

9.
$$f(x) = -\frac{1}{3}(3)^x$$


8.
$$f(x) = 5\left(\frac{1}{4}\right)^x$$
 9. $f(x) = -\frac{1}{3}(3)^x$ **10.** $f(x) = \frac{4}{3}(6)^x$


In Exercises 11 and 12, graph the function. Describe the domain and range.

11.
$$f(x) = -6\left(\frac{1}{3}\right)^{x-1} - 4$$

12.
$$f(x) = 2(5)^{x+1} - 3$$

In Exercises 13 and 14, compare the graphs. Find the value of h, k, or a.

15. Graph the function $f(x) = 2^x$. Then graph $g(x) = 2^{x-3}$. How are the y-intercept, domain, and range affected by the transformation?