Name _____ Date _____

5.3

Solving Systems of Linear Equations by Elimination For use with Exploration 5.3

Essential Question How can you use elimination to solve a system of linear equations?

1

EXPLORATION: Writing and Solving a System of Equations

Work with a partner. You purchase a drink and a sandwich for \$4.50. Your friend purchases a drink and five sandwiches for \$16.50. You want to determine the price of a drink and the price of a sandwich.

a. Let *x* represent the price (in dollars) of one drink. Let *y* represent the price (in dollars) of one sandwich. Write a system of equations for the situation. Use the following verbal model.

Number of drinks Price + Number of sandwiches Price per = Total sandwich

Label one of the equations Equation 1 and the other equation Equation 2.

b. Subtract Equation 1 from Equation 2. Explain how you can use the result to solve the system of equations. Then find and interpret the solution.

2

EXPLORATION: Using Elimination to Solve Systems

Work with a partner. Solve each system of linear equations using two methods.

Method 1 Subtract. Subtract Equation 2 from Equation 1. Then use the result to solve the system.

Method 2 Add. Add the two equations. Then use the result to solve the system.

Is the solution the same using both methods? Which method do you prefer?

a.
$$3x - y = 6$$

$$3x + y = 0$$

b.
$$2x + y = 6$$

$$2x - y = 2$$

c.
$$x - 2y = -7$$

$$x + 2y = 5$$

Solving Systems of Linear Equations by Elimination (continued)

3 1

EXPLORATION: Using Elimination to Solve a System

Work with a partner.

$$2x + y = 7$$
 Equation 1
 $x + 5y = 17$ Equation 2

- **a.** Can you eliminate a variable by adding or subtracting the equations as they are? If not, what do you need to do to one or both equations so that you can?
- **b.** Solve the system individually. Then exchange solutions with your partner and compare and check the solutions.

Communicate Your Answer

- **4.** How can you use elimination to solve a system of linear equations?
- **5.** When can you add or subtract the equations in a system to solve the system? When do you have to multiply first? Justify your answers with examples.
- **6.** In Exploration 3, why can you multiply an equation in the system by a constant and not change the solution of the system? Explain your reasoning.

Practice For use after Lesson 5.3

Core Concepts

Solving a System of Linear Equations by Elimination

- **Step 1** Multiply, if necessary, one or both equations by a constant so at least one pair of like terms has the same or opposite coefficients.
- **Step 2** Add or subtract the equations to eliminate one of the variables.
- **Step 3** Solve the resulting equation.
- **Step 4** Substitute the value from Step 3 into one of the original equations and solve for the other variable.

Notes:

Worked-Out Examples

Example #1

Solve the system of linear equations by elimination. Check your solution.

$$5x + 6y = 50$$
$$x - 6y = -26$$

$$5x + 6y = 50$$
$$x - 6y = -26$$
$$6x + 0 = 24$$

$$6x = 24$$
$$\frac{6x}{6} = \frac{24}{6}$$
$$x = 4$$

Step 4

$$x - 6y = -26$$

$$4 - 6y = -26$$

$$-4$$

$$-6y = -30$$

$$\frac{-6y}{-6} = \frac{-30}{-6}$$

$$y = 5$$

Check
$$5x + 6y = 50$$

$$5(4) + 6(5) \stackrel{?}{=} 50$$
 $4 - 6(5) \stackrel{?}{=} -26$

$$20 + 30 \stackrel{?}{=} 50$$
 $4 - 30 \stackrel{?}{=} -26$
 $50 = 50 \checkmark$ $-26 = -26$

$$4 - 30 = -26$$

 $-26 = -26$

x - 6y = -26

The solution is (4, 5).

3 Practice (continued)

Example #2

Solve the system of linear equations by elimination. Check your solution.

$$10x - 9y = 46$$
$$-2x + 3y = 10$$

Step 1
 Step 2
 Step 4

$$10x - 9y = 46$$
 $10x - 9y = 46$
 $-2x + 3y = 10$
 $-2x + 3y = 10$
 Multiply by 5.
 $-10x + 15y = 50$
 $-2x + 3(16) = 10$
 $0 + 6y = 96$
 $0 + 6y = 96$

Check
$$10x - 9y = 46$$
 $-2x + 3y = 10$
 $10(19) - 9(16) \stackrel{?}{=} 46$ $-2(19) + 3(16) \stackrel{?}{=} 10$
 $190 - 144 \stackrel{?}{=} 46$ $-38 + 48 \stackrel{?}{=} 10$
 $46 = 46 \checkmark$ $10 = 10 \checkmark$

The solution is (19, 16).

Practice A

In Exercises 1–18, solve the system of linear equations by elimination. Check your solution.

1.
$$x + 3y = 17$$
 $-x + 2y = 8$

2.
$$2x - y = 5$$
 $5x + y = 16$

$$3. \quad 2x + 3y = 10 \\ -2x - y = -2$$

4.
$$4x + 3y = 6$$
 $-x - 3y = 3$

5.
$$5x + 2y = -28$$
 $-5x + 3y = 8$

6.
$$2x - 5y = 8$$
 $3x + 5y = -13$

7.
$$2x + y = 12$$

 $3x - 18 = y$

8.
$$4x + 3y = 14$$

 $2y = 6 + 4x$

$$9. -4x = -2 + 4y \\
-4y = 1 - 4x$$

Practice (continued)

10.
$$x + 2y = 20$$
 $2x + y = 19$

11.
$$3x - 2y = -2$$
 $4x - 3y = -4$

12.
$$9x + 4y = 11$$
 $3x - 10y = -2$

13.
$$4x + 3y = 21$$
 $5x + 2y = 21$

14.
$$-3x - 5y = -7$$

 $-4x - 3y = -2$
 15. $8x + 4y = 12$
 $7x + 3y = 10$

15.
$$8x + 4y = 12$$
 $7x + 3y = 10$

16.
$$4x + 3y = -7$$
 $-2x - 5y = 7$

17.
$$8x - 3y = -9$$
 $5x + 4y = 12$

18.
$$-3x + 5y = -2$$

 $2x - 2y = 1$

19. The sum of two numbers is 22. The difference is 6. What are the two numbers?

Practice B

In Exercises 1-6, solve the system of linear equations by elimination. Check your solution.

1.
$$2x + y = 10$$

$$5x - y = 11$$

4. 10x - 11 = -3y5v - 5 = -10x

2.
$$-3x + 2y = 14$$

$$4x - 2y = -16$$

5.
$$2y - 4 = 3x$$

$$2x - 6 = 2y$$

3.
$$x + 2y = 7$$

$$13 - 5y = x$$

6.
$$8x + 3y = -5$$

$$3y = x + 4$$

In Exercises 7-12, solve the system of linear equations by elimination. Check your solution.

7.
$$3x - 4y = 19$$

$$6x + 9y = 21$$

$$6x + 9y = 21$$

6x - 3y = 15

10. 4x + 7y = 1

8.
$$4x + 5y = 3$$

$$-3x + 2y = 38$$

11.
$$21x - 11y = -9$$
 12. $3x + 6y = 6$

$$-14x + 8y = 4$$

9.
$$8x + 2y = 22$$

$$5x - 3y = 35$$

12.
$$3x + 6y = 6$$

$$-2x - 9y = -24$$

13. Describe and correct the error in solving for one of the variables in the linear system 4x + 5y = -10 and 2x - 4y = 9.

Step 1
$$4x + 5y = -10$$

$$2x - 4y = 9$$

Step 2 (Multiply by 2.)

$$4x + 5y = -10$$

$$\frac{4x - 8y = 18}{}$$

Explain why you chose the method.

$$-3y = 8$$

 $y = -\frac{8}{3}$

14.
$$x - y = 3$$

$$x = \frac{1}{3}y + 5$$

15.
$$x + 2y = \frac{5}{2}$$

$$3x - 5y = 2$$

16.
$$4x - 5y = -3$$

- 14x + 2y = 9
- 17. You and your friend are making 30 liters of sodium water. You have liters of 10% sodium and your friend has liters of 22% sodium. How many of your liters and how many of your friend's liters should you mix to make 30 liters of 15% sodium?