4.2

Writing Equations in Point-Slope Form For use with Exploration 4.2

Essential Question How can you write an equation of a line when you are given the slope and a point on the line?

EXPLORATION: Writing Equations of Lines

Go to BigIdeasMath.com for an interactive tool to investigate this exploration.

Work with a partner.

- Sketch the line that has the given slope and passes through the given point.
- Find the *y*-intercept of the line.
- Write an equation of the line.

a.
$$m = \frac{1}{2}$$

b. m = -2

2 **EXPLORATION:** Writing a Formula

Work with a partner.

The point (x_1, y_1) is a given point on a nonvertical line. The point (x, y) is any other point on the line. Write an equation that represents the slope *m* of the line. Then rewrite this equation by multiplying each side by the difference of the *x*-coordinates to obtain the **point-slope form** of a linear equation.

4.2 Writing Equations in Point-Slope Form (continued)

EXPLORATION: Writing an Equation

Go to BigIdeasMath.com for an interactive tool to investigate this exploration.

Work with a partner.

For four months, you have saved \$25 per month. You now have \$175 in your savings account.

a. Use your result from Exploration 2 to write an equation that represents the balance *A* after *t* months.

b. Use a graphing calculator to verify your equation.

Communicate Your Answer

- 4. How can you write an equation of a line when you are given the slope and a point on the line?
- **5.** Give an example of how to write an equation of a line when you are given the slope and a point on the line. Your example should be different from those above.

Core Concepts

Point-Slope Form

Words A linear equation written in the form $y - y_1 = m(x - x_1)$ is in **point-slope form**. The line passes through the point (x_1, y_1) , and the slope of the line is *m*.

Notes:

Worked-Out Examples

Example #1

Write an equation in slope-intercept form of the line shown.

$$m = \frac{4-2}{-6-(-2)} = \frac{4-2}{-6+2} = \frac{2}{-4} = -\frac{1}{2}$$

$$y - y_1 = m(x - x_1)$$

$$y - 2 = -\frac{1}{2}[x - (-2)]$$

$$y - 2 = -\frac{1}{2}(x + 2)$$

$$y - 2 = -\frac{1}{2}(x) - \frac{1}{2}(2)$$

$$y - 2 = -\frac{1}{2}x - 1$$

$$\frac{+2}{y} = -\frac{1}{2}x - 1$$

$$1$$

The equation is $y = -\frac{1}{2}x + 1$.

Example #2

Write an equation in slope-intercept form of the line that passes through the given points.

(6, -2), (12, 1)

$$m = \frac{1 - (-2)}{12 - 6} = \frac{1 + 2}{12 - 6} = \frac{3}{6} = \frac{1}{2}$$

$$y - y_1 = m(x - x_1)$$

$$y - (-2) = \frac{1}{2}(x - 6)$$

$$y + 2 = \frac{1}{2}(x) - \frac{1}{2}(6)$$

$$y + 2 = \frac{1}{2}x - 3$$

$$\frac{-2}{y} = \frac{-2}{12}x - 5$$

The equation is $y = \frac{1}{2}x - 5$.

4.2 **Practice** (continued)

Practice A

In Exercises 1–6, write an equation in point-slope form of the line that passes through the given point and has the given slope.

1.
$$(-2,1); m = -3$$
 2. $(3,5); m = 2$ **3.** $(-1,-2); m = -1$

4. (5,0);
$$m = \frac{4}{3}$$
 5. (0,4); $m = 7$ **6.** (1,2); $m = -\frac{1}{2}$

In Exercises 7–12, write an equation in slope-intercept form of the line shown.

4.2 **Practice** (continued)

In Exercises 13–18, write a linear function *f* with the given values.

13.
$$f(-3) = -1, f(-2) = 4$$
 14. $f(-2) = 1, f(1) = 7$ **15.** $f(-1) = 2, f(3) = 3$

16.
$$f(0) = -2, f(4) = -1$$
 17. $f(1) = 0, f(0) = 8$ **18.** $f(3) = 5, f(2) = 6$

In Exercises 19 and 20, tell whether the data in the table can be modeled by a linear equation. Explain. If possible, write a linear equation that represents y as a function of x.

19.	x	-3	-1	0	1	3	20.	x	-3	-1	0	1
	y	-110	-60	-35	-10	40		У	-98	18	8	62

21. Your friend is driving at a constant speed of 60 miles per hour. After driving 3 hours, his odometer reads 265 miles. Write a linear function D that represents the miles driven after h hours. What does the odometer read after 7 hours of continuous driving?

3 142

1

Practice B

In Exercises 1–3, write an equation in point-slope form of the line that passes through the given point and has the given slope.

1. (-4, 5); m = 1 **2.** $(3, 4); m = \frac{1}{3}$ **3.** $(2, -6); m = -\frac{1}{4}$

5.

In Exercises 4 and 5, write an equation in slope-intercept form of the line shown.

In Exercises 6–8, write an equation in slope-intercept form of the line that passes through the given points.

6. (-3, 6), (-5, -6) **7.** (2, -4), (5, -4) **8.** (-7, 18), (7, 14)

In Exercises 9–11, write a linear function *f* with the given values.

9. f(-5) = 2, f(7) = -4 **10.** f(-2) = 1, f(12) = 7 **11.** f(-8) = 12, f(-3) = -3

In Exercises 12 and 13, tell whether the data in the table can be modeled by a linear equation. Explain. If possible, write a linear equation that represents y as a function of x.

2.	x	0	1	2	3	4	13.	x	0	2	4	6	8
	y	3.5	3	2.5	2	1.5		у	1	2	4	8	16

- 14. The equation $y 2 = \frac{5}{4}(x + 8)$ represents the cost (in dollars) of making your own juice (in fluid ounces).
 - **a.** What is the slope of the line? Interpret the slope in the context of this situation.
 - **b.** Write the equation as a linear function.
 - **c.** Use the linear function in part (b) to determine the base cost of making your own juice.