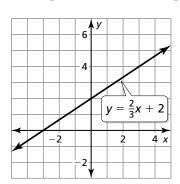
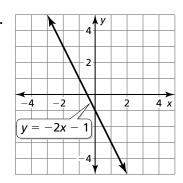
3.5


Graphing Linear Equations in Slope-Intercept FormFor use with Exploration 3.5

Essential Question How can you describe the graph of the equation y = mx + b?

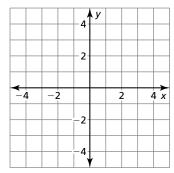

EXPLORATION: Finding Slopes and *y*-Intercepts

Work with a partner. Find the slope and *y*-intercept of each line.

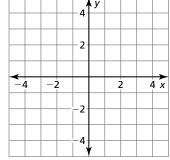
a.

b

E

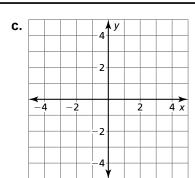

EXPLORATION: Writing a Conjecture

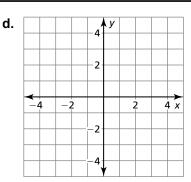
Go to BigIdeasMath.com for an interactive tool to investigate this exploration.


Work with a partner. Graph each equation. Then complete the table. Use the completed table to write a conjecture about the relationship between the graph of y = mx + b and the values of m and b.

Equation	Description of graph	Slope of graph	<i>y</i> -Intercept
a. $y = -\frac{2}{3}x + 3$	Line	$-\frac{2}{3}$	3
b. $y = 2x - 2$			
c. $y = -x + 1$			
d. $y = x - 4$			

a.

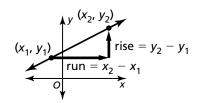



b.

Graphing Linear Equation in Slope-Intercept Form (continued)

2 EXPLORATION: Writing a Conjecture (continued)

Communicate Your Answer

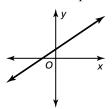

- **3.** How can you describe the graph of the equation y = mx + b?
 - **a.** How does the value of *m* affect the graph of the equation?
 - **b.** How does the value of *b* affect the graph of the equation?
 - **c.** Check your answers to parts (a) and (b) by choosing one equation from Exploration 2 and (1) varying only *m* and (2) varying only *b*.

Core Concepts

Slope

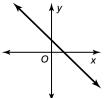
The **slope** m of a nonvertical line passing through two points (x_1, y_1) and (x_2, y_2) is the ratio of the **rise** (change in y) to the **run** (change in x).

slope =
$$m = \frac{\text{rise}}{\text{run}} = \frac{\text{change in } y}{\text{change in } x} = \frac{y_2 - y_1}{x_2 - x_1}$$

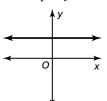


When the line rises from left to right, the slope is positive. When the line falls from left to right, the slope is negative.

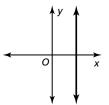
Notes:


Slope

Positive slope


The line rises from left to right.

Negative slope


The line falls from left to right.

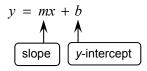
Slope of 0

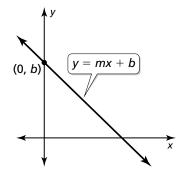
The line is horizontal.

Undefined slope

The line is vertical.

Notes:


Practice (continued)


Slope-Intercept Form

Words A linear equation written in the form y = mx + b is in slope-intercept form.

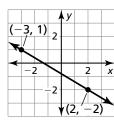
> The slope of the line is m, and the *y*-intercept of the line is *b*.

Algebra

Notes:

Worked-Out Examples

Example #1


Describe the slope of the line. Then find the slope.

The line falls from left to right. So, the slope is negative.

Let
$$(x_1, y_1) = (-3, 1)$$
 and $(x_2, y_2) = (2, -2)$.

$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-2 - 1}{2 - (-3)} = \frac{-2 - 1}{2 + 3} = \frac{-3}{5} = -\frac{3}{5}$$

The slope is $-\frac{3}{5}$.

Example #2

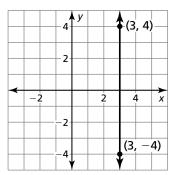
Find the slope and the y-intercept of the graph of the linear equation.

$$-5x = 8 - y$$

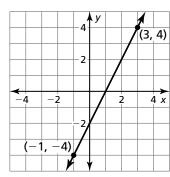
$$-5x + y = 8 + y$$

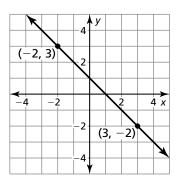
$$-5x + y = 8$$

$$\frac{+5x}{v} = \frac{+5x}{5r+}$$


The slope is 5 and the y-intercept is 8.

Practice (continued)


Practice A


In Exercise 1-3, describe the slope of the line. Then find the slope.

1.

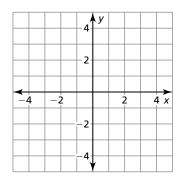
2.

In Exercise 4 and 5, the points represented by the table lie on a line. Find the slope of the line.

4

١.	х	1	2	3	4
	у	-2	-2	-2	-2

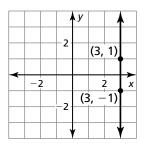
x	-3	-1	1	3
у	11	3	-5	-13

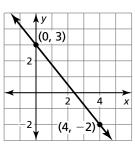

In Exercise 6–8, find the slope and the y-intercept of the graph of the linear equation.

6.
$$6x + 4y = 24$$

6.
$$6x + 4y = 24$$
 7. $y = -\frac{3}{4}x + 2$ **8.** $y = 5x$

8.
$$y = 5x$$


9. A linear function f models a relationship in which the dependent variable decreases 6 units for every 3 units the independent variable decreases. The value of the function at 0 is 4. Graph the function. Identify the slope, *y*-intercept, and *x*-intercept of the graph.


Practice B

In Exercises 1 and 2, describe the slope of the line. Then find the slope.

1.

2

In Exercises 3 and 4, the points represented by the table lie on a line. Find the slope of the line.

3.

x	4	4	4	4
y	-2	1	4	7

4

•	x	3	1	-1	-3
	У	-4	1	6	11

In Exercises 5–8, find the slope and the *y*-intercept of the graph of the linear equation.

5.
$$y = 12$$

6.
$$-3x + y = 7$$

7.
$$-4x = 9 - 2y$$

8.
$$0 = 2 - 3y + 12x$$

In Exercises 9–12, graph the linear equation. Identify the x-intercept.

9.
$$y = x$$

10.
$$x + 3y = 9$$

11.
$$-y + 2x = 0$$

12.
$$3x - y + 1 = 0$$

13. A linear function *g* models the growth of your hair. On average, the length of a hair strand increases 1.25 centimeters every month.

- **a.** Graph g when g(0) = 10.
- **b.** Identify the slope and interpret the *y*-intercept of the graph.
- **c.** By how much, in inches, does the length of a hair strand increase each month?

In Exercises 14 and 15, find the value of k so that the graph of the equation has the given slope or y-intercept.

14.
$$y = 6kx - 2; m = \frac{2}{3}$$

15.
$$y = -\frac{1}{2}x + \frac{4}{3}k$$
; $b = -8$