
CHAPTER 3 Graphing Linear Functions

3.1 Functions	61
3.2 Linear Functions	67
3.3 Function Notation	73
3.4 Graphing Linear Equations in Standard Form	79
3.5 Graphing Linear Equations in Slope-Intercept Form	85
3.6 Transformations of Graphs of Linear Functions	91

4 x

2

2

5. Plot the point that is on the *y*-axis and 5 units down from the origin.

-2

				\y			
_							
1	-2	2			2	2	x
			-2-				
			-4-				
			١	1			

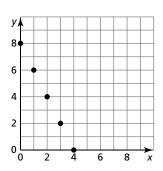
2

Evaluate the expression for the given value of *x*.

6. 2x + 1; x = 3 **7.** 16 - 4x; x = -4 **8.** 12x + 7; x = -2 **9.** -9 - 3x; x = 5

10. The length of a side of a square is represented by (24 - 3x) feet. What is the length of the side of the square when x = 6?

1


3.1 Functions For use with Exploration 3.1

Essential Question What is a function?

EXPLORATION: Describing a Function

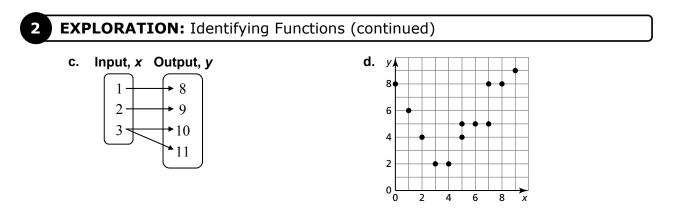
Work with a partner. Functions can be described in many ways.

- by an equation
- by an input-output table
- using words
- by a graph
- as a set of ordered pairs
- **a.** Explain why the graph shown represents a function.

b. Describe the function in two other ways.

EXPLORATION: Identifying Functions

Work with a partner. Determine whether each relation represents a function. Explain your reasoning.


a.	Input, <i>x</i>	0	1	2	3	4
	Output, y	8	8	8	8	8

b.	Input, <i>x</i>	8	8	8	8	8
	Output, y	0	1	2	3	4

Date

Date

3.1 Functions (continued)

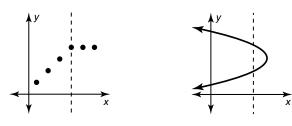
- e. (-2, 5), (-1, 8), (0, 6), (1, 6), (2, 7)f. (-2, 0), (-1, 0), (-1, 1), (0, 1), (1, 2), (2, 2)
- **g.** Each radio frequency x in a listening area has exactly one radio station y.
- **h.** The same television station *x* can be found on more than one channel *y*.
- i. x = 2
- **j.** y = 2x + 3

Communicate Your Answer

3. What is a function? Give examples of relations, other than those in Explorations 1 and 2, that (a) are functions and (b) are not functions.

Name

Notes:


Core Concepts

Vertical Line Test

Words A graph represent a function when no vertical line passes through more than one point on the graph.

Examples Function

Not a function

Notes:

3.1 Practice (continued)

The Domain and Range of a Function

The domain of a function is the set of all possible input values.

The **range** of a function is the set of all possible output values.

Notes:

Worked-Out Examples

Example #1

Determine whether the relation is a function. Explain.

(7, 4), (5, -1), (3, -8), (1, -5), (3, 6)

no; The input 3 has two outputs, -8 and 6.

Example #2

MODELING WITH MATHEMATICS The function y = 25x + 500 represents your monthly rent y(in dollars) when you pay x days late.

- **a.** Identify the independent and dependent variables.
- **b.** The domain is 0, 1, 2, 3, 4, and 5. What is the range.
 - **a.** The amount of your monthly rent y depends on how many days late x it is when you pay. So, y is the dependent variable and x is the independent variable.
 - **b.** Make an input-output table to find the range.

Input, x	25x + 500	Output, y
0	25(0) + 500	500
1	25(1) + 500	525
2	25(2) + 500	550
3	25(3) + 500	575
4	25(4) + 500	600
5	25(5) + 500	625

The range is 500, 525, 550, 575, 600, and 625.

Name

3.1 Practice (continued)

Practice A

In Exercises 1 and 2, determine whether the relation is a function. Explain.

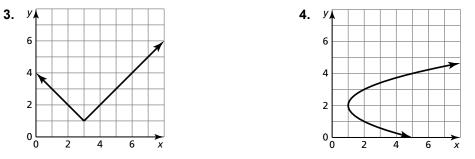
1.	Input, <i>x</i>	-2	0	1	-2
	Output, y	4	5	4	5

2. (0, 3), (1, 1), (2, 1), (3,	3, 0)
---------------------------------------	-------

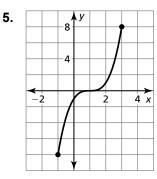
In Exercises 3 and 4, determine whether the graph represents a function. Explain.

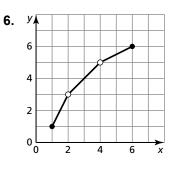
In Exercises 5 and 6, find the domain and range of the function represented by the graph.

- 7. The function y = 12x represents the number y of pages of text a computer printer can print in x minutes.
 - **a.** Identify the independent and dependent variables.
 - **b.** The domain is 1, 2, 3, and 4. What is the range?


4

Practice B


In Exercises 1 and 2, determine whether the relation is a function. Explain.


1.	Input, <i>x</i>	0	1	3	2	1	2.	Input, <i>x</i>	0	1	2	3	
	Output, y	1	5	10	15	20		Output, y	-14	-7	0	7	

In Exercises 3 and 4, determine whether the graph represents a function. Explain.

In Exercises 5 and 6, find the domain and range of the function represented by the graph.

- 7. The function 2x + 1.5y = 18 represents the number of book raffle tickets x and food raffle tickets y you buy at a club event.
 - **a.** Solve the equation for *y*.
 - **b.** Make an input-output table to find ordered pairs for the function.
 - **c.** Plot the ordered pairs in a coordinate plane.

In Exercises 8–10, find the domain and range of the function.

8. y = |x| + 2 **9.** y = -|x| + 1 **10.** y = -|x| - 3